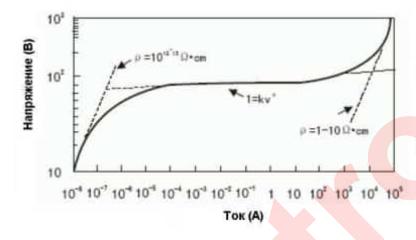
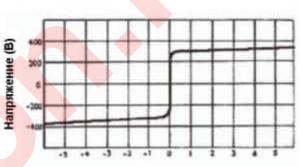
Оксидно-цинковые варисторы

ОСОБЕННОСТИ

- Широкий диапазон напряжений 18В-1.8кВ
- Быстрая реакция на резкое повышение напряжения (мкс)
- Оптимальная вольт-амперная характеристика.
- Симметричность вольт-амперных характеристик
- Высокая стойкость к току перегрузки (2000А/см2)




МАРКИРОВКА

men nen opner	115				
F	NR	05	K	180	T

Серия, код	Нелинейный Резистор	Элемент Размеры (мм)				The second secon		Варистор (В)	Тип у	паковки
F	NR	05	5	K	±10%	180=18x10 ⁰	(незаполненное)	Россыпь		
		40	40	M	±20%	181=18x10 ¹	T	Лента & Катушка		
						182=18x10 ²				

ХАРАКТЕРИСТИКИ

Вольт-амперная характеристика

Условия проверки

Параметр	Методы испытаний		
Диапазон рабочих температур	-40°C - +85°C		
Диапазон температур хранения	-40°C - +125°C		
Номинальное напряжение варистора	Элемент диаметр<5мм Испытательный ток 0.1мA(DC)		
Макс фиксированное напряжение	Элемент диаметр≥5мм Испытательный ток 1мA(DC) Ислытательный импульс 8/20 мкс		
Мощность	Импульс тока прямоугольной формы		
Максимально выдерживаемый импульс тока	Испытательный импульс 8/20 мкс.		

ВАРИСТОРЫ ОБЩЕГО НАЗНАЧЕНИЯ

Варистор - нелинейный прибор, который имеет симметричную вольт-амперную характеристику, аналогичную характеристике стабилитрона. Серия оксидно-цинковых варисторов - это нелинейные резисторы, состоящие в основном из оксида цинка с добавлением оксидов других металлов. Они обладают симметричной высоконелинейной вольтамперной характеристикой при уникально высокой импульсной устойчивости. Оксидо-цинковые варисторы являются в настоящее время практически единственным быстродействующим средством защиты сложных и дорогостоящих полупроводниковых систем различного назначения. Уникальные свойства варисторов используются для создания низкочастотных фильтров, необходимых для высокоскоростных линий передачи данных; для защиты от импульсных воздействий напряжения, для шумопоглощения (радио/электромагнитные помехи)

Размеры варисторов общего назначения:

	Номинальное напряжение (В)	D Макс	d ±0.1	W ±1.0	Н	Т Макс	
ne.	18~82	7:0	0.6	5,0	10.0	3.5]
05	100~470	7.5	0.6	5.0	10.0	6.0	
07	18- 470	9.0	0.6	5.0	12.0	6.0	
10	18~ 330	13.5	8.0	7.5	16.5	5.4	
10	360~ 1100	14.0	0.8	7.5	17.0	8.5	
	18~ 330	17.0	8.0	7.5	20.0	5.4	
14	360~ 1100	17.5	8.0	7.5	20.5	8.5	
	180	25.0	8.0	15.0	30.0	12.0	3 мин — Фd
	18~ 330	23.0	1.0	10.0	27.0	5.5	
	360~ 1100	24.0	1.0	10.0	28.0	9.0	
20	1800	25.0	1.0	15.0	30,0	12.0	±_ -

ВАРИСТОРЫ ДЛЯ МОЛНИЕОТВОДА.

Варисторы для молниеотвода идеально подходит для защиты полупроводников, реле сигнализации, телекоммуникации, калиброванного оборудования связи, всех видов электрического оборудования, потому что варисторы могут выдерживать большой импульсный ток, высокое напряжение, быстро на это реагировать и имеют низкое остаточное напряжение и т.д.

Размеры варисторов для молниеотвода:

Part No.		Размеры(мм)			
Part No.	D	т	w	d	()
FNR-25	30	12	15	1.5	
FNR-32	38	13	18	1.5	30±1mm
FNR-40	45	13	20	1.5	T

Оксидно-цинковые варисторы

ВАРИСТОРЫ ОБЩЕГО НАЗНАЧЕНИЯ

Номинальное напряжение, (Nominal Varistor Voltage), Vn — условный параметр, напряжение на варисторе,

при котором через него течет некий ток, называемый классификационным. Для варисторов, применяемых в радиоэлектронике, классификационный ток обычно принимается равным 1 mA. Иногда этот параметр называют классификационным напряжением Uкл. Классификационное напряжение не является рабочим эксплуатационным напряжением варистора. Рабочее напряжение выбирается исходя из допустимой мощности рассеяния и предельного значения амплитуды напряжения.

Максимальное непрерывное напряжение длительно подаваемое на варистор при температуре 25°C. Рабочее напряжение (Operating Voltage), В (Vdc - для постоянного тока и Vrms — для переменного) — данное напряжение должно быть превышено только при перенапряжениях.

Максимальное напряжение (Maximum Operating Voltage), Vm - напряжение, которое может быть приложено к варистору на неопределенно длительное время. Указывается среднеквадратическое значение.

Максимальное напряжение отсечки (Maximum Clamping Voltage), Vc - максимальное напряжение, измеренное на клеммах варистора при воздействии испытательного импульса 8/20 мкс стандарта ITU 1Vc-Per IEC 61000-4-2 Level 4.

Рабочий ток (Operating Current), A — диапазон — от 0,1 мА до 1 А

Максимальный импульсный ток, (Peak Current или Peak Surge Current) I_{TM} - максимал<mark>ьный импульсный ток, не вызывающий повреждения варистора. Измеряется при помощи импульса 8/20 мкс.</mark>

Максимальная энергия импульса (Max. Energy Capability), W_{TM} - максимальное количество энергии, поглощаемое варистором без деградации параметров, выражается в джоулях (Ватт-секундах) и может быть выражена следующим образом: W_{TM}=V_CIT где T время действия импульса.

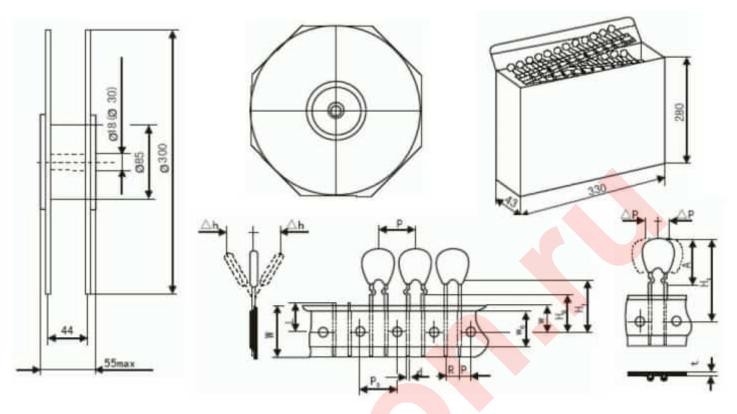
Собственная емкость в неактивном режиме С_V - Емкость между выводами варистора, измеряется на частоте 1 КГц или 1МГц. Емкостной фактор существенен только в отсутствии тока, проходящего через варистор, т.к. с увеличением приложенного напряжения емкость варистора падает (по нелинейному закону). При максимально допустимом падении напряжения на варисторе, его емкость близка к нулю.

Быстродействие (Response Time) - время перехода из непроводящего состояния в проводящее.

Поглощаемая энергия (Absorption energy), Дж

Коэффициент нелинейности — отношение статического сопротивления в данной точке вольтамперной характеристики к динамическому сопротивлению в той же точке.

Температурные коэффициенты (статич. сопротивления, напряжения, тока) — для всех типов варисторов не превышают 0,1% на градус.


	•										
Part No.	Номинальное напряжение	Максим рабо напря	очее	напря	альное же <mark>ние</mark> ечки	выдерж	м <mark>аль</mark> но к <mark>ива</mark> емый ока 8/20 мкс	энергия	имальная импульса (Дж)	Максимальная номинальная мощность	Емкость варистора 1кГц
	Vn (B)	Vrms (B)	Vdc (B)	V _c (B)	IP(A)	2Time(A)	1Time(A)	2мс (ms)	10/1000мкс (us)	Ват (W)	пФ (РF)
FNR-05K180	18	11	14	40	1	50	100	0.3	0.4	0.01	1600
FNR-05K220	22	14	18	48	1	50	100	0.4	0.5	0.01	1300
FNR-05K270	27	17	22	60	1	50	100	0.5	0.6	0.01	1050
FNR-05K330	33	20	26	73	1	50	100	0.6	0.8	0.01	900
FNR-05K390	39	25	31	86	1	50	100	8.0	0.9	0.01	500
FNR-05K470	47	30	38	104	1	50	100	1.0	1.1	0.01	450
FNR-05K560	56	35	45	123	1	50	100	1.0	1.3	0.01	400
FNR-05K680	68	40	56	150	1	50	100	1.2	1.6	0.01	350
FNR-05K820	82	50	65	145	1	50	100	1.7	2.5	0.1	250
FNR-05K101	100	60	85	175	1	50	100	2.0	3.0	0.1	200
FNR-05K121	120	75	100	210	5	200	400	2.5	4.0	0.1	170
FNR-05K151	150	95	125	260	5	200	400	3.0	4.8	0.1	140
FNR-05K181	180	115	150	315	5	200	400	3.5	5.5	0.1	110
FNR-05K201	200	130	170	355	5	200	400	4.0	6.5	0.1	80
FNR-05K221	220	140	180	380	5	200	400	4.5	7.0	0.1	70
FNR-05K241	240	150	200	415	5	200	400	4.5	8.0	0.1	70
FNR-05K271	270	175	225	475	5	200	400	6.0	8.5	0.1	65
FNR-05K301	300	200	250	525	5	200	400	6.0	9.0	0.1	55
FNR-05K331	330	210	275	580	5	200	400	6.5	9.0	0.1	60
FNR-05K361	360	230	300	620	5	200	400	7.5	10.0	0.1	50
FNR-05K391	390	250	320	675	5	200	400	8.0	12.0	0.1	50
FNR-05K431	430	275	350	745	5	200	400	9.0	13.0	0.1	45
FNR-05K471	470	300	385	810	5	200	400	10.0	15.0	0.1	40

ВАРИСТОРЫ ОБЩЕГО НАЗНАЧЕНИЯ

РАЗМЕРЫ КАТУШКИ

УПАКОВКА ЛЕНТЫ В КОРОБКЕ

Параметр	Код					
Элемент	Ф	5	7	10	14-	
Диаметр корпуса	D	7.5Maxc.	9.0Макс.	13.5Макс.	16,5Макс	
Диаметр вывода	ď	0.	.6	0	.8	
Шаг компонентов	р	12.	7±1	25.	4±1	
Шаг перфорации.	p	12.	7±3	12.7	±0.3	
Отверстия в центре	p	3.85	±0.7	7.5:	+0 8	
Растояние между выводами	R	5±0.8		7.5±0.8		
СВыравнивание компонентов	Δh	2.0Maxc		2.0Masc		
Ширина бумажной ленты	W	18		18		
Ширина наклейки	WG	13Мин.		13Мин.		
Позиционные отверстия	W1	9±0.5		9±	9±0.5	
Высота компонентов	Ht	30%	fake:	408	taxc	
Высота до изгиба	HO	16±0.5		1.0Maxc.		
Диаметр перфорации	D0	4±0.2		4±0.2		
Общая толщина ленты	t:	0.9Masc		0.9Макс.		
Длина обрезанных выводов	L	11Maxc.		11Maxc.		
Высота компонента обрезанного	A	13Макс.	15Макс.	19.5Maxc.	22.5Max	
Допуск позиции компонентов	ΔP	±1.3	Maxc.	±2.0	Макс.	

КОЛИЧЕСТВО ЭЛЕМЕНТОВ В ЛЕНТЕ И КАТУШКЕ

Marries and the same of the sa	Количество(шт.)				
Днаметр элемента	18-270(B)	300~470(B)			
05	2500	1500			
07	2500	1500			
10	2000	1500			
14	2000	1500			