_				0.1n 1	n 10n 100n 1µ	10µ 10	Οµ 1m 10	0m 10n	n 100m	1 1	0 10
	LQH3NPN_MR p34		1212 (3030)		1µH 🔤	4	7μΗ		460mA	2.1	5A
	LQH31CN_03 p121		1206 (3216)		120nH		100µH	80)mA	970m	A
	LQH32CN_23 p123		1210 (3225)		1µH 📒		560µH	60	mA	800m/	۵.
	LQH32CN_33 p125		1210 (3225)		150nH	10µH			450mA	1.45	A
	LQH32CN_53 p127		1210 (3225)		1µH 🔤		100µH	10	0mA	1A	
	LQH32DN_23 p129		1210 (3225)		1µH 🔤		560µH	60	mA	800m/	4
ľ	LQH32DN_53 p131		1210 (3225)		1µH		100µH	10	0mA	1A	
	LQH32PB_N0 p20		1210 (3225)		470nH		120µH	1	200mA 📩	3.	4A
	LQH32PB_NC p22		1210 (3225)		470nH	22µ	н		650mA	4	4A
ŀ	LQH32PN_N0 p24		1210 (3225)		470nH		120µH	2	200mA 📃	3.4	4A
ŀ	LQH32PN_NC p26		1210 (3225)		470nH	22µ	н		650mA	4	.4A
	DEM3512C p391		1514 (3735)		680nH	22µ	н		530mA	2.5	A
ŀ	DEM3518C p392		1514 (3735)		560nH	22µ	н		880mA	3.4	4A
	LQH44PN_GR p40		1515 (4040)		680nH	4	7μH		410mA	2.5	A
ŀ	LQH44PN_J0 P42		1515 (4040)		1µH		7µН		380mA	2A	
ŀ	LQH44PN_P0 P44		1515 (4040)		1µH	22µ			800mA	2.9	95A
ŀ	LQH43CN_03 p133		1812 (4532)		1µH		470µH	9	DmA 📃	1.08A	+ +
ŀ	LQH43CN_33 p135		1812 (4532)		560nH	3.9µH				5A 🗖 2.9	
ŀ	LQH43PB_26 p36		1812 (4532)		1µH		220µH		240mA 🗖	3.4	
$\left \right $	LQH43PN_26 p38		1812 (4532)		1µH		220µH		240mA	3.4	
$\left \right $	DEM4518C p393	Wire Wound Ferrite Core	1818 (4745)		1.2µH	22µ				A 3.	+ +
$\left \right $	LQH5BPB_T0 P46	Туре	2020 (5050)		470nH	22µ					7.7A
┝	EQ113D1 D_10		, ,		1µH		150µH		650mA	-	7A
┝			2020 (5050)		470nH	22µ				-	7.7A
$\left \right $			2020 (5050)			-	100µH		260mA	2.4	
╞	DJZLC		2020 (5252)		1.2µH						
$\left \right $	DJJLC Current		2020 (5252)		1.1µH		100µH		460mA		87A
$\left \right $	DJJLC Rdc		2020 (5252)		4.7µl		220µH	10	350mA	2.3	-
$\left \right $			2220 (5750)		120nH		100.1	10mH 50r		-	5A
$\left \right $			2424 (6060)		1µH	_	100µH		900m/	-	9.5A
┝	Dabbooc		2424 (6060)		1.2µH		100µH		1.2		9.8A
$\left \right $	DUSLED		2524 (6362)		1µH		150µH		440mA		.52A
	LQH66SN_03 P139		2525 (6363)		270nH			10mH 50r			6A
$\left \right $	DSTSEC		2929 (7373)		1µH		470µH		430mA		9.2A
$\left \right $	DEM8030C P405		3131 (8080)		1.5µH		7μH		1.3		7.5A
$\left \right $	DEM8040C P406		3131 (8080)		1.5µH 🔤	33				.4A	10A
	DEM8045C P407		3131 (8080)		1.5µH		7μH		2	1A	11.2A
-	DG8040C P404		3131 (8080)		1µH		100µH		1.3		10.4A
ŀ	DEM10050C P408		3939 (100100)		1.5µH	33					15.3 A
ŀ	DS104C2 P409		4040 (101101)		1.1µH		120µH		970m/		11.7A
	DS106C2 p411		4040 (101101)		1.2µH		330µH		690mA		12A
	DS126C2 P413		4949 (125125)		1.7µH 🗖		680µH		580mA		11.8A
	DFE2012085 p302		0805 (2012)		470nH				1.	8A 🔲 4	A I
L	DFE2012105 p304		0805 (2012)		470nH	2.2µH			2	1A 🗖 4	8A
	DFE201210U p340		0805 (2012)		240nH	2.2µH				2A 📃	6.5A
	DFE201610C p306		0806 (2016)		560nH 🦲	2.2µH			1.5	5A 🔲 2.8	3A
	DFE201610E p336		0806 (2016)		240nH	10µH			1/		6.3A
	DFE201610P p328	Wire Wound Metal Alloy	0806 (2016)		240nH	2.2µH				2A 🔲 5	.4A
	DFE201610R p320	Core Type	0806 (2016)		470nH	2.2µH			1.0	5A 🗖 3A	L.
ſ	DFE201612C p308	11	0806 (2016)		470nH 🗾	2.2µH			1.0	5A 🗖 3.4	4A
ſ	DFE201612E p338		0806 (2016)		330nH	4.7µH			1.	8A 🔜 (6.3A
ſ	DFE201612P p330		0806 (2016)		240nH	2.2µH			2	1A 🔲	6.5A
T	DFE201612R p322		0806 (2016)		470nH	2.2µH			1.	7A 🗖 3.	5A
	DEE252007E p342		1008 (2520)							1	

Inductance Range (H)

0.1n 1n 10n 100n 1µ 10µ 100µ 1m 10m

Size Code

in inch (in mm)

Structure

Series

Continued on the following page. earrow

3

O05E.pdf Apr.28,2017

Rated Current (A)

10m 100m 1 10 100

Part Numbering

Inductors for Power Lines

Product ID

Product ID	
LQ	Chip Inductors (Chip Coils)

2Structure

Code	Structure	
н	Wire Wound Type (Ferrite Core)	
W		
м	Multilayer Type (Ferrite Core)	

Oimensions (LxW)

Code	Nominal Dimensions (LxW)	Size Code (in inch)	
15	1.0x0.5mm	0402	
18	1.6x0.8mm	0603	
21	2.0x1.25mm	0805	
2M	2.0x1.6mm	0806	
2H	2.5x2.0mm	1008	
ЗN	3.0x3.0mm	1212	
31	3.2x1.6mm	1206	
32	3.2x2.5mm	1210	
43	4.5x3.2mm	1812	
44	4.0x4.0mm	1515	
5B	5.0x5.0mm	2020	
55	5.7x5.0mm	2220	
66	6.3x6.3mm	2525	

Applications and Characteristics

Code	Series	Applications and Characteristics
D	LOM	for Choke (Low-current DC Power Supplies)
F	LQM	for Choke (DC Power Supplies)
D		for Choke
s	LQH	for Choke (Magnetically Shielded Type)
с	LQH/LQW	for Choke (Coating Type)
P LQM/LQH		for Power Line

GCategory

Code	Category		
N	Standard Type		
В	Special Feature Classification		
W			

6 Inductance

Expressed by three-digit alphanumerics. The unit is micro-henry (µH). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures. If there is a decimal point, it is expressed by the capital letter "**R**." In this case, all figures are significant digits. If inductance is less than 0.1µH, the inductance code is expressed by a combination of two figures and the capital letter "**N**," and the unit of inductance is nano-henry (nH). The capital letter "**N**" indicates the unit of "nH," and also expresses a decimal point. In this case, all figures are significant digits. For those products whose inductance values are specified using three designated digits, these values may be indicated using the closest two digits instead.

Inductance Tolerance

Code	Inductance Tolerance
D	±0.5nH
J	±5%
к	±10%
М	±20%
N	±30%

③Features (Except for LQH□□P/LQM□□P)

Code	Features	Series
0	Standard Type	LQM/LQH*1/LQW
1	1 Low DC Resistance	
2 Standard Type		LQH32C/32D
3	Low DC Resistance	LQH32C/43CN
5	Low Profile Type	LQH2MC/32C/32D
7	Large Current Type	
8	Low DC Resistance /Large Current Type	LQM21F

*1 Except for LQH32 Series

8 Thickness

(LQH P/LQM P Only • Except for LQH43P/LQH5BPN_38)

(-4		
Code	Nominal Dimensions (T)	
В	0.35mm	
с	0.5mm	
D	0.6mm	
E	0.7mm	
F	0.8mm	
0	0.85mm	
G	0.9mm	
J	1.1mm	
М	1.4mm	
N	1.55mm	
Р	1.65mm	
т	2.0mm	

Continued on the following page. $earrow \earrow \ea$

Continued from the preceding page. \searrow

Selectrode (Except for LQH P/LQM P)

Lead (Pb) Free

Code	Electrode	Series	
0	5-	LQM/LQW	
2	- Sn	LQH2MC	
3	LF Solder	LQH (Except for LQH2MC)	

Specification

(LQH P/LQM P Only • Except for LQH43P/LQH5BPN_38)

Code	Specification	
0/S	Standard Type	
С	Good Bias Current Characteristics Type	
H/A/E	High Spec Type (Low DC Resistance; Good Bias Current Characteristics Type)	
R	Low DC Resistance Type	

39 Thickness (LQH43P/LQH5BPN_38 Only)

Code	Dimensions (T)
26	2.6mm
38	4.0mm max.

Packaging

Code	Packaging	Series
к		LQH ^{*1} /LQM21 ^{*2}
F	Embossed Taping (ø330mm Reel)	LQH3NP_MR
L	Embassed Taning (g190mm Deal)	LQH*5/LQM18P/LQM21*2/LQM31P/LQM32P/LQM2HP/LQM2MP
E	Embossed Taping (ø180mm Reel)	LQH3NP_MR
В	Bulk	LQH2MC/LQM/LQW
L	Paper Taping (ø330mm Reel)	LQM18/LQM21*3
D	Paper Taping (ø180mm Reel)	LQM18/LQM21*4 /LQW

*1 Except for LQH2MC/LQH2HP_G0/LQH3NP/LQH43C

*2 LQM21D(22 - 47μH)/LQM21F(4.7 - 47μH)

*3 LQM21D(1.0 - 10µH)/LQM21F(1.0 - 2.2µH)

*4 LQM21D(1.0 - 10μH)/LQM21F(1.0 - 2.2μH)/LQM21P

*5 Except for LQH3NP_MR

Inductors for Power Lines LQH32PN_N0 Series 1210 (3225) inch (mm)

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (\Box : packaging code)

Part Number	Inductance	Inductance Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F.* (min.)
LQH32PNR47NN0	0.47µH ±30%	1MHz	3400mA	2550mA	0.03Ω±20%	100MHz
LQH32PN1R0NN0	1.0µH ±30%	1MHz	2300mA	2050mA	0.045Ω±20%	100MHz
LQH32PN1R5NN0	1.5µH ±30%	1MHz	1750mA	1750mA	0.057Ω±20%	70MHz
LQH32PN2R2NN0	2.2µH ±30%	1MHz	1550mA	1600mA	0.076Ω±20%	70MHz
LQH32PN3R3NN0	3.3µH ±30%	1MHz	1250mA	1200mA	0.12Ω±20%	50MHz
LQH32PN4R7NN0	4.7µH ±30%	1MHz	1000mA	1000mA	0.18Ω±20%	40MHz
LQH32PN6R8NN0	6.8µH ±30%	1MHz	850mA	850mA	0.24Ω±20%	40MHz
LQH32PN100MN0	10µH ±20%	1MHz	750mA	700mA	0.38Ω±20%	30MHz
LQH32PN150MN0	15µH ±20%	1MHz	600mA	520mA	0.57Ω±20%	20MHz
LQH32PN220MN0	22µH ±20%	1MHz	500mA	450mA	0.81Ω±20%	20MHz
LQH32PN330MN0	33µH ±20%	1MHz	380mA	390mA	1.15Ω±20%	13MHz
LQH32PN470MN0	47µH ±20%	1MHz	330mA	310mA	1.78Ω±20%	11MHz
LQH32PN680MN0	68µH ±20%	1MHz	280mA	275mA	2.28Ω±20%	11MHz
LQH32PN101MN0	100µH ±20%	1MHz	180mA	250mA	2.70Ω±20%	8MHz
LQH32PN121MN0	120µH ±20%	1MHz	170mA	200mA	4.38Ω±20%	8MHz

Operating temp. range (Self-temp. rise included): -40 to $125^{\circ}\mathrm{C}$

Operating temp. range (Self-temp. rise not included): -40 to 85°C

Class of Magnetic Shield: Magnetic Resin

For reflow soldering only

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F.: Self-Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of nominal inductance value. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

Continued on the following page. \checkmark

TOKO Products

Inductors for General Circuits

24

muRata

Continued from the preceding page. \searrow

Inductance-Frequency Characteristics (Typ.)

Temperature Rise Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

muRata

Inductors for Power Lines LQH32PN_NC Series 1210 (3225) inch (mm)

2.5±0.2

2.5±0.2

(in mm)

Appearance/Dimensions

Packaging

Code	Packaging	Minimum Quantity
к	ø330mm Embossed Taping	7500
L	ø180mm Embossed Taping	2000

Rated Value (: packaging code)

Part Number	Inductance	Inductance Test Frequency	Rated Current (Isat)*	Rated Current (Itemp)*	DC Resistance	S.R.F.* (min.)
LQH32PNR47NNC	0.47µH ±30%	1MHz	4400mA	2900mA	0.024Ω±20%	100MHz
LQH32PN1R0NNC	1.0µH ±30%	1MHz	3000mA	2500mA	0.036Ω±20%	100MHz
LQH32PN1R5NNC	1.5µH ±30%	1MHz	2600mA	2100mA	0.053Ω±20%	70MHz
LQH32PN2R2NNC	2.2µH ±30%	1MHz	2000mA	1850mA	0.064Ω±20%	70MHz
LQH32PN3R3NNC	3.3µH ±30%	1MHz	1900mA	1550mA	0.100Ω±20%	50MHz
LQH32PN4R7NNC	4.7µH ±30%	1MHz	1600mA	1200mA	0.155Ω±20%	40MHz
LQH32PN6R8NNC	6.8µH ±30%	1MHz	1300mA	1100mA	0.220Ω±20%	40MHz
LQH32PN100MNC	10µH ±20%	1MHz	1000mA	900mA	0.295Ω±20%	30MHz
LQH32PN150MNC	15µH ±20%	1MHz	800mA	700mA	0.475Ω±20%	20MHz
LQH32PN220MNC	22µH ±20%	1MHz	650mA	550mA	0.685Ω±20%	20MHz

Operating temp. range (Self-temp. rise included): -40 to 125°C

Operating temp. range (Self-temp. rise not included): -40 to 85°C

Class of Magnetic Shield: Magnetic Resin

For reflow soldering only

*Isat: Rated Current based on Inductance change

*Itemp: Rated Current based on Temperature rise

*S.R.F.: Self-Resonant Frequency

When rated current is applied to the products, inductance will be within ±30% of nominal inductance value. When rated current is applied to the products, the temperature rise caused by self-generated heat shall be limited to 40°C max. Keep the temperature (ambient temperature plus self-generation of heat) under 125°C.

Inductance-Frequency Characteristics (Typ.)

Inductance-Current Characteristics (Typ.)

Note • Please read rating and ①CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
• This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Continued from the preceding page. \searrow

Temperature Rise Characteristics (Typ.)

27

Inductors for Power Lines 🖄 Caution/Notice

Caution

Rating

1. About the Rated Current

Do not use products beyond the rated current as this may create excessive heat and deteriorate the insulation resistance.

2. About Excessive Surge Current

Surge current (pulse current or rush current) greater than the specified rated current applied to the product may cause a critical failure, such as an open circuit or burnout caused by excessive temperature rise.

Please contact us in advance if applying a surge current.

Notice

Storage and Operating Condition

<Operating Environment>

Do not use products in a chemical atmosphere such as chlorine gas, acid or sulfide gas.

- <Storage Requirements>
- 1. Storage Period

The LQM series should be used within 6 months; the other products should be used within 12 months. Check solderability if this period is exceeded.

2. Storage Conditions

 (1) Store products in a warehouse in compliance with the following conditions: Temperature: -10 to +40°C. Humidity: 15 to 85% (relative humidity)

Handling

This item is designed to have sufficient strength, but handle with care to avoid chipping or breaking its ceramic structure.

LQW_C series

- To prevent breaking the wire, avoid touching with sharp materials, such as tweezers or other materials such as the bristles of a cleaning brush, to the wire wound portion.
- To prevent breaking the core, avoid applying excessive mechanical shock to products mounted on the board.
- In some mounting machines, when picking up components, a support pin pushes the components up from the bottom of the base tape. In this case, please remove the support pin. The support pin may damage the components and break the wire.
- In rare cases, the laser recognition cannot recognize this component. Please contact us when you use laser recognizion. (There is no problem with the permeation and reflection type.)
- The product temperature rises about 40°C maximum when the permissible current is applied to LQW15C/LQW18C. Please use caution regarding the temperature of the substrate and air around the part.

Do not subject products to rapid changes in temperature and humidity.

Do not store them in a chemical atmosphere such as one containing sulfurous acid gas or alkaline gas. This will prevent electrode oxidation, which causes poor solderability and possible corrosion of inductors.

- (2) Do not store products in bulk packaging to prevent collision among inductors, which causes core chipping and wire breakage.
- (3) Store products on pallets to protect from humidity, dust, etc.
- (4) Avoid heat shock, vibration, direct sunlight, etc.

LQH_C/D/H/M/N/P series

- To prevent breaking the wire, avoid touching with sharp materials, such as tweezers or the bristles of a cleaning brush, to the wire wound portion of this product.
- To prevent breaking the core, avoid applying excessive mechanical shock to products mounted on the board.
- Temperature may rise up to max. 40°C when applying the rated current to Inductors for Power Lines. Use caution regarding the temperature rating of the circuit board and components around the chip Inductors.

LQM series

- There is the possibility that magnetism may change the inductance value. Do not use a magnet or tweezers with magnetism when handling chip inductors. (The tip of the tweezers should be molded with resin or pottery.)
- When the excessive current over rated current is applied, it may cause the inductance value to change due to magnetism.

<Transportation>

Do not apply excessive vibration or mechanical shock to products.

Inductors for Power Lines

TOKO Products

Inductors for General Circuits

RF Inductors

Inductors for Power Lines ACaution/Notice

Continued from the preceding page. \searrow

<Resin Coating>

When coating products with resin, the relatively high resin curing stress may change inductance values.

For exterior coating, select resin carefully so that electrical and mechanical performance of the product is not affected. Prior to use, please evaluate reliability with the product mounted in your application set.

(LQW, LQH series)

An open circuit issue may occur by mechanical stress caused by the resin, amount/cured shape of resin, or operating conditions, etc. Some resins containing impurities or chloride may possibly generate chlorine by hydrolysis under some operating conditions, causing corrosion of the inductor wire and leading to an open circuit.

<Rated Current>

(LQH2HP_GR/JR, LQH2MPN_GR, LQH3NP_GR/JR/ME, LQH44P_GR, LQH5BPN_38 Series)

When rated current is applied to the products, Inductance will be within $\pm 30\%$ of specified inductance value range.

- (Other LQH_P Series except for LQH2HP_GO Series) When rated current is applied to the products, Inductance will be within ±30% of nominal inductance value.
- Rated Current Based on Temperature Rise
 For LQH2MC series and LQH_P series, rated current is set to keep the temperature rise caused by self heating 40°C or less.

For other Inductors for Power Lines, please refer to individual specifications.

<Handling of a Substrate>

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting the substrate when cropping the substrate, inserting and removing a connector from the substrate, or tightening a screw to the substrate.

Excessive mechanical stress may cause cracking in the Product.

Bending Twisting I II \square

Measuring Method

Measuring Method of Inductance/Q

1. Residual elements and stray elements of test fixtures can be described by F-parameter as shown in the following:

2. The impedance of chip inductors (chip coils) Zx and measured value Zm can be described by input/output current/voltage.

$$Zm = \frac{V_1}{I_1} , \quad Zx = \frac{V_2}{I_2}$$

3. Thus, the relation between Zx and Zm is shown in the following:

$$Zx = \alpha \frac{Zm - \beta}{1 - Zm\Gamma}$$
where, $\alpha = D / A = 1$
 $\beta = B / D = Zsm - (1 - Yom Zsm) Zss$
 $\Gamma = C / A = Yom$

Zsm: measured impedance of short chip Zss: residual impedance of short chip* Yom: measured admittance when opening the fixture

*Residual impedance of short chip

Residual Impedance	Series
0.556nH	LQW15C
0.771nH	LQW18C

4. Lx and Qx should be calculated with the following equation.

$$Lx = \frac{Im (Zx)}{2\pi f} , \quad Qx = \frac{Im (Zx)}{Re (Zx)}$$

Lx: Inductance of chip Inductors (chip coils) Qx: Q of chip Inductors (chip coils) f: Measuring frequency

muRata

 ANote
 • Please read rating and
 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Inductors for Power Lines

Inductors for General Circuits

RF Inductors

TOKO Products Inductors for Power Lines

TOKO Products Inductors for General Circuits

Inductors for Power Lines Soldering and Mounting

1. Standard Land Pattern Dimensions

A high Q value is achieved when the PCB electrode land pattern is designed so that it does not project beyond the

chip Inductor's (chip coil's) electrode.

Land Pattern + Solder Resist

Solder Resist

Land Pattern

Series Standard Land Dimensions LQM18F7L3P (Except for LQM18P_CH/H/GH) LQM21D7_L17_21P (Except for LQM2MP_GH) EH/GH/JH) (Except for LQM2MP_GH) LQM23P LQM2MP (Except for LQM2MP_GH) LQM23P LQM2MP (Except for LQM2MP_GH) LQM23P LQM2MC LQM32P LQ										(in mm)
(iccordination control contro control contro control control control control control control c	Series		Standard Lan	d Dimensic	ons					
(Except for LQM18P_CH/FM/GH) LQM18F/21P Flow 0.7 22.2.6 0.7 - (Except for LQM21P_CA/CH/ EH/GH) LQM21P_ZAP 0.8 2.4 1.8 - LQM21D/21P/21P 0.0 42.52 1.2 - - LQM21P/21P 0.0 42.52 1.2 - LQM21P 0.0 42.52 1.2 - LQM21P 1.0 3.0 1.5 - LQM32P 1.0 3.0 1.5 - LQM32P 1.0 3.8 2.0 - LQM32P 1.0 3.6 1.5 - LQM32P 1.3 3.8 2.0 - LQM32P 1.3 3.8 2.0 - LQM32P 1.3 3.8 2.0 - LQM35C 0.0 1.5 4.4 2.0 - LQM35C 0.0 1.5 4.4 2.0 - LQM35C 0.0 1.4 0.6 - - LQM35C 0.0 1.4 0.6 <	•		Part Numbe	er		a	b		c	d
Image: circle of L QM 21P_CACH/ EM/GH/JMP Image: circle of L QM 22P_CACH/ EM/GH/JMP Image: circle of				Flow				5		
EH/GH) (Except for LQM2MP_GH) LQM2AP (Except for LQM2HP_CH/ EH/GH/JH) LQM32P LQM32			LQM18F/18P	Reflow	- (1.8-2.0		.7	-
LQM2hp (Except for LQM2HP_GH/ EMGM1/M) Image: marked			LQM21D/21F/21	1P	1	L.2	3.0-4.0) 1	.0	_
LQM21P_CH/EH/GH/ LQM32P	,		LQM2MP		0	0.8	2.4	1	.8	_
Circle tor LQM2HP_CH/ EH/GH/JH) LQM32P 200 203 2.7 - LQM31P LQM32P 19 3.6 2.7 - LQM32P 10 3.6 2.0 - LQM32P 10 3.6 2.0 - LQM32P 10 3.8 2.0 - LQM32P 13 3.8 2.0 - LQM32P 13 3.8 2.0 - LQM44P_DO/DOR 15 4.4 3.0 - LQM44P_DO/DOR 18 5.5 4.1 1.85 LQM35C_10 0.4 1.4 0.66 - LQW18C 0.7 2.2 1.0 - LQM21P_CA/PH/EH/GH LQM21P_CA/PH/EH/GH 0.0 0.4 1.4 0.66 LQM18P_CH/FH/GH LQM18P_CH/FH/GH LQM18P_CH/FH/GH 1.0 7.0 7.7 LQM18P_CH/FH/GH LQM21P_CH 0.7 7.7 7.7 7.8 2.0 7.7 7.7 LQM21P_CH <th></th> <th></th> <th>LQM2HP</th> <th></th> <th>1</th> <th>L.6</th> <th>3.0</th> <th>1</th> <th>.5</th> <th>-</th>			LQM2HP		1	L.6	3.0	1	.5	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•		LQM31P		2	2.0	4.2-5.2	2 1	.2	-
LQM31P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM32P LQM35C_10 LQM35C_10 LQM35C_10 LQM35C_10 LQM35C_10 LQM35C_10 LQM32C LQM3C LQM		υ	LQM32P		1	L.9	3.6	2	.7	-
LQH32P LQH31C 10 4.5 1.5 - LQH31C LQH31P 1.3 3.8 2.0 - LQH32P 1.3 3.8 2.0 - LQH32P 1.3 3.8 2.0 - LQH44P_D0/J0/GR 1.5 4.4 3.0 - LQH35P 1.8 5.5 4.1 1.85 LQH35P 0.4 1.4 0.6 - LQH35D/665 2.0 8.0 3.5 - LQW15C_10 0.4 1.4 0.6 - LQW12C_10 0.4 1.4 0.6 - LQW12C_10 0.4 1.4 0.6 - LQW12C_10 0.7 0.7 1.2 1.0 - LQM21P_CH/EH/GH 0.0 0.7 1.4 0.7 7 LQM22P_GH 0.1 0.7 1.6 0.7 1.4 0.7 LQM21P_CH/EH/GH 0.7 0.7 1.4 0.7 0.7 LQM22P_GH 0.7 0.7 1.4 0.7 <			LQH2MC		0	0.8	2.6	1	.0	-
LQH32P LQH32P LQH42P_PO/JO/GR LQH42P_DO/JO/GR LQH42P_CH/FH/GH/ LQH42P_CH/FH/GH/JH CH12P_CA/CH/EH/GH/JH CH12P_CA/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/CH/	-		LQH31C		1	L.O	4.5	1	.5	-
LQH32P LQH44P_DO/JOGR 1.5 4.4 2.7 LQH3BP 1.8 5.5 4.1 1.85 1.8 5.5 4.1 1.85 LQH35D/665 LQW15C, 00 0.4 1.4 0.66 LQW15C, 10 0.4 1.4 0.66 LQW13C, 10 0.4 1.4 0.66 LQW13C, 10 0.4 1.4 0.66 LQM13D_CLOP 0.7 0.4 1.4 0.66 LQW13C, 10 0.4 1.4 0.66 LQM13D_CLOP 0.7 0.7 0.2 1.0 0.7 1.0	•	Ь	LQH32P		1	L.3	3.8	2	.0	-
LQH4P_PO/JO/GR LQH55D L3 10 10 LQH55D/665 LQW15CN_00 LQW15C_10 LQW18C_10 0.4 1.4 0.6 - LQW15CN_00 LQW15C_10 LQW18C_10 0.4 1.4 0.6 - LQW15C_10_C 0.4 1.4 0.6 - LQW18C_10 0.4 1.4 0.6 - LQW18C_10 0.4 1.4 0.6 - LQW18C_10 0.7 2.2 1.0 - LQM21P_CA/CH/EH/GH 0.7 2.2 1.0 - LQM18P_CH/FH/GH 0.7 0.7 1.8-2.0 0.7 1.0 7 LQM18P_CH 0.7 0.7 1.8-2.0 0.7 1.1 0.7 0.7 LQM18P_CH 0.0.7 0.7 1.8-2.0 0.7 1.4 0.6 0.7 LQM18P_CH 0.0.7 0.7 1.4 0.6 0.7 1.4 0.6 0.7 LQM18P_CH 1.5 1.5 1.5 1.5 1.5 1.6 <td< td=""><td>-</td><th></th><td>LQH44P_P0</td><td></td><td>1</td><td>L.3</td><td>4.4</td><td>3</td><td>.0</td><td>-</td></td<>	-		LQH44P_P0		1	L.3	4.4	3	.0	-
LQHSBP LQHSP 1.8 5.5 4.1 1.85 LQHSD/665 2.0 8.0 3.5 - LQW15C.10 0.4 1.4 0.6 - LQM21P.CA/FH/GH/GH/JH LQM18P_GH 0.7 2.2 1.0 - LQM18P_GH 0.07 0.7 1.8-20 0.7 1.4 0.7 LQM18P_GH 0.07 0.7 1.8-20 0.7 1.1 0.7 0.7 LQM18P_GH 0.07 0.7 1.8-20 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 1.1 0.7 <td>-</td> <th></th> <td>LQH44P_J0/GR</td> <td></td> <td>1</td> <td>1.5</td> <td>4.4</td> <td>2</td> <td>.7</td> <td>-</td>	-		LQH44P_J0/GR		1	1.5	4.4	2	.7	-
LQHS5D/665 LQW15C_O0 0.0 1.4 0.6 - LQW15C_10 0.4 1.4 0.66 - LQW18C 0.7 2.2 1.0 - LQM18P_CH/FH/GH LQM21P_CA/CH/EH/GH LQM21P_CH/EH/GH/JH 0 - - - - LQM18P_CH/FH/GH QM24 0.7 2.2 1.0 - LQM21P_CA/CH/EH/GH QM24 0.7 2.2 1.0 - LQM21P_CH/EH/GH QM24 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_CH 0.7.1.0 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_GH 0.7.1.7 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_GH 0.7 0.7 1.8 <	• –		LQH5BP		1	L.8	5.5	4	.1	1.85
LQW15C_10 0.4 1.4 0.66 - LQW18C 0.7 2.2 1.0 - LQM18P_CH/FH/GH LQM21P_CA/CH/EH/GH QM2MP_GH 0.07 0.7 2.2 1.0 - LQM2HP_CH/EH/GH/LQM2HP_CH/EH/GH/JH QM2MP_GH 0.07 0.7 1.8-20 0.7 0.7 0.7 0.7 0.7 LQM2HP_CH/EH/GH/JH QM2MP_GH 0.07 0.7 1.8-20 0.7			LQH55D/66S		2	2.0	8.0	3	.5	-
LQW18C 0.7 2.2 1.0 LQM18P_CH/FH/GH LQM21P_CA/CH/EH/GH/JH LQM18P_CH/EH/GH/JH Part Number Rated (0) a b c Land Path Tickness and Dimensional LQM18P_CH/EH/GH/JH LQM18P_CH 0-0.7 (7.10) 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_CH 0-0.7 (7.7.15) 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_FH 0-0.7 (7.7.15) 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_CH 0-0.7 (7.7.15) 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_CH 0-0.7 (7.7.15) 0.7 1.8-20 0.7 0.7 0.7 0.7 LQM18P_CH 0-1.0 1.2 3.0-40 1.0 1.0 1.0 1.0 LQM21P_CH 10-1.5 1.2 3.0-40 1.0 1.0 1.0 1.0 LQM21P_CH 1.5-3.1 1.5 1.5 1.5 1.5 1.5 <td< th=""><th>LQW15CN_00</th><th></th><th></th><th></th><th>0</th><th>0.4</th><th>1.4</th><th></th><th></th><th></th></td<>	LQW15CN_00				0	0.4	1.4			
LQM18P_CH/FH/GH LQM21P_CA/CH/EH/GH/JH LQM2HP_CH/EH/GH/JH					-					-
LQM21P_CA/CH/EH/GH LQM2MP_GH Part Number Raided (A) A b C Land Baym 35/m 70/m LQM2HP_CH/EH/GH/JH LQM18P_CH -0.7 0.7 18-20 0.7 10.7 0.7 <t< th=""><th>LQW18C</th><th></th><th>LQW18C</th><th></th><th>0</th><th>0.7</th><th>2.2</th><th>1</th><th>.0</th><th></th></t<>	LQW18C		LQW18C		0	0.7	2.2	1	.0	
LQM21P_CA/CH/EH/GH LQM2MP_GH Part Number Raided (A) A b C Land Baym 35/m 70/m LQM2HP_CH/EH/GH/JH LQM18P_CH -0.7 0.7 18-20 0.7 10.7 0.7 <t< th=""><th>LOM18P CH/FH/GH</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Land</th><th>Ded Th</th><th>eluness</th></t<>	LOM18P CH/FH/GH							Land	Ded Th	eluness
LQM2MP_GH LQM18P_CH/EH/GH/JH Image: height of the second	• –		Part Number		a	ь				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								18µm	35µm	70µm
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LQM2HP_CH/EH/GH/JH		LQM18P_CH	0-0.7	07	18-20		0.7	0.7	0.7
$ \left \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				0.7-1.05	0.7	1.0 2.0	0.7	1.1	0.7	0.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			LOM18P GH	0-0.7	0.7	1.8-2.0	0.7	0.7	0.7	0.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.7-1.7				1.4	0.7	0.7
$ \begin{array}{ c c c c c } & 0.7-1.15 & 0 & 1.2 & 0.7 & 0.7 \\ \hline 100 & 0.7-1.15 & 0 & 1.2 & 0.74 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 \\ \hline 100 & 0.7 & 0.7 \\ \hline$					0.7	0.7 1.8-2.0	0.7			
$ \begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			LQM21P_CA		1.2	3.0-4.0	0 1.0			
$ \begin{array}{ c c c c c c } & & & & & & & & & & & & & & & & & & &$		chip coil							-	
$ \left \begin{array}{c} & & & & & & & & & & & & & & & & & & &$			LQM21P_CH		1.2	3.0-4.0	1.0			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-	
$ \begin{array}{c} 1.0 \\ $		σ	LQM21P_EH		1 2	20.40	10			
$ \begin{array}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$			LQM21P_GH		1.2	3.0-4.0	0 1.0	<u> </u>		
$ \begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix} \\ \mathbf{B} \end{bmatrix} = \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \end{bmatrix} = \mathbf{A} \\ \mathbf{B} $									-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>	LOM2MP GH		0.8	24	1.8		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<mark>⊸ b</mark>			0.0	2.4	1.0		-	
LQM2HP_CH1.63.01.53.01.51.5-3.01.51.51.51.51.5 A_{AB} 0-1.51.63.01.51.51.5-3.01.63.01.51.51.53.0-5.01.63.0-5.01.63.01.51.50-1.50-1.51.63.01.51.51.53.0-5.01.63.0-5.01.63.01.51.50-1.51.61.61.63.01.51.51.51.51.61.61.63.01.51.61.61.63.01.51.51.51.51.5<									-	
$ \begin{array}{c c} 0 - 1.5 \\ 1.5 - 3.0 \\ 3.0 - 5.0 \end{array} \begin{array}{c} 1.5 \\ 1.5 - 3.0 \\ 3.0 - 5.0 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 3.0 \end{array} \begin{array}{c} 1.5 \\ 3.0 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 5.0 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 5.0 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 5.0 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \end{array} \end{array}$			LQM2HP_CH		1.6	3.0	1.5		-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			LQM2HP_EH		1.6	3.0	1.5			
$\begin{array}{c c} 0 - 1.5 \\ 1.5 - 2.6 \\ 3.3 - 4.2 \end{array} \begin{array}{c} 0 - 1.5 \\ 1.5 - 2.6 \\ 3.3 - 4.2 \end{array} \begin{array}{c} 1.6 \\ 2.4 \\ 4.4 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 2.4 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \end{array} \begin{array}{c} 1.5 \\ 1.5 \\ 1.5 \end{array} \end{array}$									-	
3.3-4.2 4.4 3.6 2.4 0-1.6 0-1.6 1.6 1.5 1.5 LQM2HP_JH 1.6-2.4 1.6 3.0 1.5 2.4									-	
3.3-4.2 4.4 3.6 2.4 0-1.6 0-1.6 1.6 1.5 1.5 LQM2HP_JH 1.6-2.4 1.6 3.0 1.5 2.4			LQM2HP_GH		1.6 3.	3.0	1.5			
LQM2HP_JH 1.6-2.4 1.6 3.0 1.5 2.4 1.5 1.5								4.4	3.6	2.4
				0-1.6				1.5	1.5	1.5
2.4-3.5 3.6 2.4 1.5			LQM2HP_JH	1.6-2.4	1.6	3.0	1.5	2.4	1.5	1.5
				2.4-3.5				3.6	2.4	1.5

Attention should be paid to potential magnetic coupling effects when using the Inductor (coil) as a resonator.

Inductors for Power Lines Soldering and Mounting

Continued from the preceding page. \searrow

Land Pattern + Solder Resist Land Pattern Solder Resist (in mm) Series Standard Land Dimensions LQH2HP (Except for LQH2HP_GR) 0.8 3.0 LQH2HP_GR/JR 1.25 2.5 5.5 LQH32C/D 2.0 0 1.0 1.3 1.0 2.4 **LQH3NP** 0.7 (Except for LQH3NP_JR/ 0.75 0.45 ₁0.45 GR/ME) 3.3 0.75 1.15 1.15 1.0 3.3 LQH3NP_JR/GR/ME 2.7 1.4 3.0 7.5 LQH43C LQH43P 0 1.5 1.5 1.5

Attention should be paid to potential magnetic coupling effects when using the Inductor (coil) as a resonator.

2. Standard Soldering Conditions

(1) Soldering method

Chip Inductors (Chip coils) can be flow or reflow soldered.

Please contact Murata regarding other soldering methods.

For LQH2MC/2MP/2HP/3NP/32D/32P/43PB/ 44P/5BP/55D/66S, LQM2MP_DH/EH/GH/ 2HP_CH/EH/GH/JH/18P_CH/DH/FH/GH/ 21P_CA/CH/EH/GH/32P, LQW15C/18C series, please use reflow soldering. Solder: Use Sn-3.0Ag-0.5Cu solder.

- Flux: Use rosin-based flux, but not strongly acidic flux (with chlorine content exceeding 0.2wt%). Do not use water-soluble flux.
 - The flux used for the LOW15C/18C series should be
 - a rosin-based flux that includes a middle activator
 - equivalent to 0.06wt% to 0.1wt% chlorine.
- For additional mounting methods, please contact Murata.

Continued on the following page. $earrow \earrow \ea$

Inductors for Power Lines Soldering and Mounting

Continued from the preceding page. \searrow

(2) Soldering profile

	Temp. (T1)	Time. (t1)	Temp. (T2)	Time. (t2)	OFILOW	Temp. (T3)	Time. (t2)	ornow
LQM18F/18P (Except for CH/DH/FH/GH) LQM21D/21F/21P (Except for CA/CH/EH/GH) LQM2MP (Except for DH/EH/GH) LQM31P LQH31C	150°C	60s min.	250°C	4 to 6s	2 times max.	265±3°C	5s max.	2 times max.
LQH32C LQH43C/43PN	150°C	60s min.	250°C	4 to 6s	2 times max.	265±3°C	5s max.	1 time

Continued on the following page. \checkmark

260°C/10s

1 time

60s max.

230°C

Cycle

Inductors for Power Lines

Inductors for General Circuits

TOKO Products

muRata

245±3°C

max.

220°C

LQH43C

LQH55D, LQH66S

30 to 60s

Inductors for Power Lines Soldering and Mounting

Continued from the preceding page. \searrow

- (3) Reworking with a Soldering Iron
 - Preheating at 150°C for 1 minute is required. Do not directly touch the ceramic element with the tip of the soldering iron. The reworking soldering conditions are as follows:
 - Soldering iron power output: 80W max. Temperature of soldering iron tip: 350°C Diameter of soldering iron end: 3.0mm max. Soldering time: within 3 s

3. Mounting Instructions

- (1) Land Pattern Dimensions
 - Large lands reduce the Q of the mounted chip. Also, large protruding land areas (bordered by lines having the dimensions "c" and "d" shown) cause floating and electrode leaching.
- (2) Land Pattern Designing (LQH series, LQW series) Please follow the recommended patterns. Otherwise, their performance, which includes electrical performance or solderability, may be affected, or result in "position shift" in the soldering process.

(3) Magnetic Coupling

Since some chip inductors (chip coils) are constructed like an open magnetic circuit, narrow spacing between inductors (coils) may cause magnetic coupling. LQM, LQH66S, and LQH_P series have a magnetically shielded structure. The structure makes their coupling coefficient smaller than that of conventional chip inductors (chip coils).

(4) PCB Warping

The PCB should be designed so that products are not subjected to mechanical stress caused by warping the board.

Please keep the fix time with the soldering iron within 2 times.

Continued on the following page. earrow

Inductors for Power Lines

RF Inductors

Note • Please read rating and (LCAUTION (for storage, operating, rating, soldering, mounting and handling) in this catalog to prevent smoking and/or burning, etc.
 • This catalog has only typical specifications. Therefore, please approve our product specifications or transact the approval sheet for product specifications before ordering.

Inductors for Power Lines Soldering and Mounting

Continued from the preceding page. \searrow

(5) Amount of Solder Paste

Excessive solder causes electrode corrosion, while insufficient solder causes low electrode bonding strength. Adjust the amount of solder paste as shown on the right so that the correct amount is applied. Guideline of solder paste thickness

- LQW15C: 50 to 100µm
- LQM, LQW18C, LQH2MC/2HP, LQH3NP/32P, LQH43PB/LQH44P/5BP: 100 to 150µm
- LQH31C/32C, LQH43C/43PN, LQH55D, LQH66S: 200 to 300µm

4. Cleaning

The following conditions should be observed when cleaning chip inductors (chip coils):

- Cleaning Temperature: 60°C max. (40°C max. for alcohol cleaning agents)
- (2) Ultrasonic

Output: 20W/l max.

Duration: 5 minutes max.

Frequency: 28 to 40kHz

Care should be taken not to cause resonance of the PCB and mounted products.

(3) Cleaning agent

The following cleaning agents have been tested on individual components. Evaluation in complete assembly should be done prior to production.

(a) Alcohol cleaning agents Isopropyl alcohol (IPA)

(b) Aqueous cleaning agents

Pine Alpha ST-100S LQH66S series: Aqueous agents should not be used because they may cause quality deterioration or damage to appearance.

(4) Ensure that flux residue is completely removed. Component should be thoroughly dried after aqueous agents have been removed with deionized water.

For additional cleaning methods, please contact Murata.

muRata

Minimum Quantity and 8mm Width Taping Dimensions

(in mm)

muRata

Continued from the preceding page. \searrow

Minimum Quantity and 8mm Width Taping Dimensions

The dimension of the cavity of embossed tape is measured at the bottom side.

*1: 0.25 LQM2HP/2MP/31P_00, LQH2, LQM21P

<Paper 2>

Paper Tape 1

Part Number	Dime	nsions	Total Thickness of Tape	Packaging Code (Minimum Qty. (pcs.))			
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk	
LQM21D (1 to 10µH)	1.45	2.25	1.1 max.	D (4000)	J (10000)	B (1000)	
LQM21F (1 to 2.2µH)	1.45	2.25	1.1 max.	D (4000)	J (10000)	B (1000)	
LQM21P_C0	1.45	2.25	0.8 max.	D (4000)	—	B (1000)	
LQM21P_CA	1.45	1.45	0.9 max.	D (3000)	—	B (1000)	
LQM21P_CH	1.45	2.25	0.7 max.	D (3000)	—	B (1000)	
LQM21P_EH	1.45	2.25	1.0 max.	D (3000)	—	B (1000)	
LQM21P_G	1.45	2.25	1.1 max.	D (4000)	—	B (1000)	
LQM18F	1.05	1.85	1.1 max.	D (4000)	J (10000)	B (1000)	
LQM18P_D0	1.05	1.85	0.85 max.	D (4000)	—	B (1000)	
LQM18P_CH	1.1	1.9	0.95 max.	D (4000)	—	B (1000)	
LQM18P_GH	1.1	1.9	1.25 max.	D (4000)	D (4000) —		
LQW18C	1.0	1.8	1.1 max.	D (4000) — B		B (500)	

Paper Tape 2

Part Number	Dimer	nsions	Total Thickness of Tape	Packaging Code (Minimum Qty. (pcs.))		
	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQM18PN_DH	1.05	1.85	1.05 max.	D (4000)	—	B (1000)

muRata

(in mm)

Continued on the following page. earrow

TOKO Products Inductors for Power Lines

159

Continued from the preceding page. \searrow

Minimum Quantity and 8mm Width Taping Dimensions

Embossed Tape

Deut Number	Dime	nsions	Depth of Cavity	Packaging Code (Minimum Qty. (pcs.))			
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk	
LQM18P_B0	1.0	1.8	0.50	L (4000)	—	B (1000)	
LQM18P_C0	1.0	1.8	0.60	L (4000)	—	B (1000)	
LQM18P_F0	1.0	1.8	1.0	L (4000)	—	B (1000)	
LQM21D (22 to 47µH)	1.45	2.25	1.3	L (3000)	K (10000)	B (1000)	
LQM21F (4.7 to 47µH)	1.45	2.25	1.3	L (3000)	K (10000)	B (1000)	
LQM21P_GH	1.45	2.25	1.05	L (3000)	_	B (1000)	
LQM2HP_CH	2.3	2.8	0.6	L (3000)	_	B (1000)	
LQM2HP_J0/JC	2.25	2.75	1.3	L (3000)	_	B (1000)	
LQM2HP_JH	2.25	2.75	1.3	L (3000)	—		
LQM2HP_G	2.3	2.8	1.1	L (3000)	—	B (1000)	
LQM2HP_GH	2.3	2.8	1.1	L (3000)	_		
LQM2HP_E0/EH	2.3	2.8	0.9	L (3000)	_	B (1000)	
LQM2MP_DH/EH	1.9	2.4	0.9	L (3000)	_	B (1000)	
LQM2MP_G0	1.85	2.25	1.1	L (3000)		B (1000)	
LQM2MP_GH	1.9	2.4	1.1	L (3000)	_		
LQM31P_00	1.9	3.5	1.05	L (3000)		B (1000)	
LQM31P_C0	1.9	3.5	0.75	L (4000)	_	B (1000)	
LQM32P_G0/GC	2.9	3.6	1.15	L (3000)		B (1000)	
LQH31C	1.9	3.6	2.0	L (2000)	K (7500)	_	
LQH32C_33/_23, LQH32D_23	2.9	3.6	2.1	L (2000)	K (7500)	_	
LQH32C_53, LQH32D_53	2.9	3.6	1.7	L (2000)	K (7500)	_	
LQH32P	2.9	3.6	1.7	L (2000)	K (7500)	_	
LQH2MC_02	1.9	2.3	1.05	L (3000)	_	B (100)	
LQH2MC_52	1.9	2.3	0.8	L (3000)	_	B (100)	

(in mm)

muRata

Continued from the preceding page. \searrow

Minimum Quantity and 8mm Width Taping Dimensions

The dimension of the cavity is measured at the bottom side.

Embossed Tape

Part Number	Dime	nsions	Depth of Cavity	Packaging Code (Minimum Qty. (pcs.))		
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQH2HP_GR	2.3	2.8	1.1	L (3000)	—	_
LQH2HP_JR	2.3	2.8	1.3	L (2000)	_	_

The dimension of the cavity is measured at the bottom side.

Embossed Tape

Part Number	Dimensions		Depth of Cavity	Packaging	g Code (Minimum Qty. (pcs.))	
Part Number	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQH3NP_MR	3.3	3.3	1.6	E (2000)	F (8000)	—

*1 0.3 LQH3NP_GR *2 1.1±0.1 LQH3NP_GR

Embossed Tape

Part Number	Dimensions		Depth of Cavity	Packaging Code (Minimum Qty. (pc		Qty. (pcs.))
	a	b	с	ø180mm reel	ø330mm reel	Bulk
LQH3NP_GR	3.3	3.3	1.1	L (3000)	—	—
LQH3NP_JR	3.3	3.3	1.6	L (2000)	—	—
LQH3NP_ME	3.3	3.3	1.6	L (2000)	—	_

(in mm)

Continued from the preceding page. \searrow

Minimum Quantity and 12mm Width Embossed Taping Dimensions

The dimension of the cavity of embossed tape is measured at the bottom side.

Embossed Tape

Part Number	Dimensions (*c: Depth of Cavity)				Packaging Code (Minimum Qty. (pcs.))		
	a	b	с	d	ø180mm reel	ø330mm reel	Bulk
LQH43C	3.6	4.9	2.7	0.3	L (500)	—	_
LQH43P	3.6	4.9	2.7	0.3	L (500)	K (2500)	
LQH44P_J0/GR	4.3	4.3	1.4	0.3	L (1000)	K (3500)	
LQH44P_P0	4.3	4.3	1.9	0.3	L (1000)	K (3500)	—
LQH5BP_38	5.3	5.3	4.2	0.4	L (400)	K (1500)	
LQH5BP_T0	5.3	5.3	2.4	0.3	L (500)	K (3000)	
LQH55D	5.4	6.1	5.0	0.4	L (350)	K (1500)	
LQH66S	6.7	6.7	5.6	0.4	L (350)	K (1500)	_
LQH66S	6.7	6.7	5.6	0.4	L (350)	K (1500)	

muRata