Part Numbering

AC Line Filters

(Part Number)

PL A 10 A S 152 2R0 R 2 B

1 Product ID

Product ID	
PL	Common Mode Choke Coils

2Type

Code	Туре			
Α	AC Standard			
Н	AC High-frequency			
Υ	AC Hybrid Choke Coils			

Applications

Code	Applications			
10	for AC Line			
17	TOF AC LINE			

4Structure

Code	Structure			
Α	Core Vertical			
В	Core Horizontal			

6 Features

Code	Features			
S	Safety Recognized			
N	General Use			
Н	High Inductance			
V	High Inductance Safety Recognized			

6Inductance

Expressed by three figures. The unit is micro-henry (μ H). The first and second figures are significant digits, and the third figure expresses the number of zeros that follow the two figures.

Rated Current

Expressed by three-digit alphanumerics. The unit is amperes (A). A decimal point is expressed by the capital letter "R." In this case, all figures are significant digits.

8Winding Mode

Code	Winding Mode				
Α	Parallel Winding				
В	Parallel Winding (High-Performance)				
D	Sectional Winding				
R	Standard				
Р	Single Layer Winding				

9Lead Dimensions

Code	Lead Dimensions		
2	3.5mm		

Packaging

Code	Packaging	Series
В	Bulk	All series

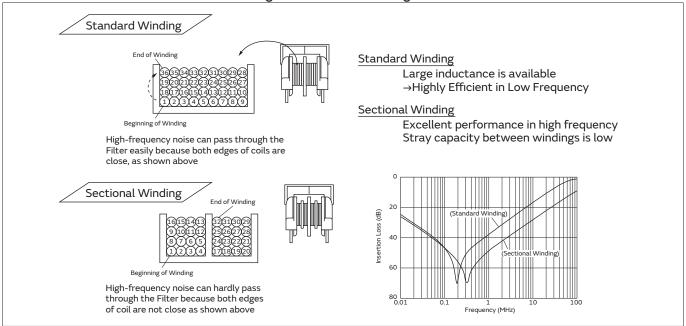
Outline of EMI Suppression Filter (EMIFIL®) for AC Power Lines

EMI (Electromagnetic Interference) suppression filters for AC power lines eliminate noise entering equipment from commercial power lines or noise generated from electronic equipment.

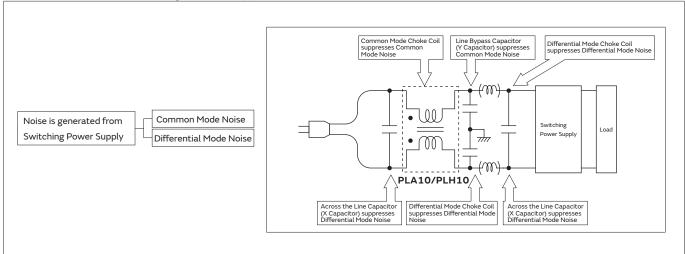
Common mode chokes, line bypass capacitors, and across the line capacitors are generally used as AC EMI suppression filter devices. In suppressing common mode noise, common mode chokes are the most important devices. Because the characteristics of common mode chokes influence the

performance of the total filter block, MURATA provides two types of common mode chokes (standard type and high frequency type).

A hybrid choke coil is a high-performance EMI suppression device that can suppress both common mode noise and differential mode noise at the same time. It is effective in AC power supplies with active devices for a higher harmonic countermeasure, which tends to emit relatively higher differential mode noise.


Classification of EMI Suppression Filter for AC Power Lines

Classification of EMI Suppr	Classification of EMI Suppression Filter for AC Power Lines						
Product Name	Appearance	Effective Frequency Range (Hz) 10k 100k 1M 10M 100M 1G	Application				
Common Mode Choke Coil	Standard Type PLA10		Suppression of general common mode noise				
	High Frequency Type PLH10		Suppression of common mode noise which contains high frequency noise above 10MHz				
Hybrid Choke Coil	PLY10		Suppression of conduction noise in AC power line with active device for higher harmonic countermeasure. Suppression of AC power line noise which contains both common mode noise and differential mode noise.				
Hybrid Choke Coil							
	PLY17		For AC power supply, AC adaptor. Set for low-profile equipment.				


3

Outline of EMI Suppression Filter (EMIFIL®) for AC Power Lines

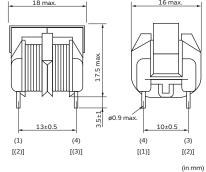
Common Mode Choke Coil Standard Winding and Sectional Winding

Noise Measures for Switching Power Supply

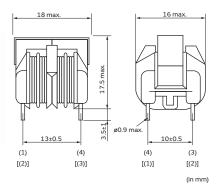
EMI Suppression Filters (EMIFIL®) for AC Power Lines

PLY10 Series

The PLY10 is a compact and high-performance hybrid choke coil that can handle differential mode noise caused by the harmonics currents regulation circuit as well as common mode noise. It can handle noise problems much more compactly than a combination of a conventional common mode choke coil and a differential mode choke coil.


Features

- PLY10 has both functions of a common mode choke coil and a differential mode choke coil in its compact body.
- 2. Low profile in vertical core layout
- 3. PLY10 has the same pin layout as a general common mode choke coil which enables it to replace conventional components.
- 4. Both a standard winding and a sectional winding for higher frequency noise is available.


EMI Problem for harmonics currents regulation

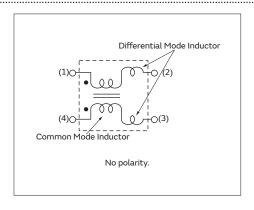
There are some methods that meet harmonics currents regulations (IEC1000-3, EN60555-2) such as an active filter and one converter. However, they cause new EMI problems of differential mode noise because they use active components. For that reason, additional filter components to meet differential mode noise must be applied.

Standard Winding

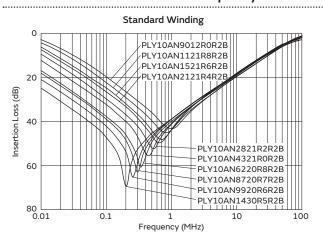
Part Number		Normal Mode Inductance	Rated Current	Rated Voltage	
Part Number	(min.) (mH)	(min.) (µH)	(A)	(VAC)	(VDC)
PLY10AN9012R0R2B	0.9	65	2.0	300	500
PLY10AN1121R8R2B	1.1	90	1.8	300	500
PLY10AN1521R6R2B	1.5	110	1.6	300	500
PLY10AN2121R4R2B	2.1	150	1.4	300	500
PLY10AN2821R2R2B	2.8	190	1.2	300	500
PLY10AN4321R0R2B	4.3	300	1.0	300	500
PLY10AN6220R8R2B	6.2	400	0.8	300	50
PLY10AN8720R7R2B	8.7	530	0.7	300	50
PLY10AN9920R6R2B	9.9	690	0.6	300	50
PLY10AN1430R5R2B	14.0	1000	0.5	300	50

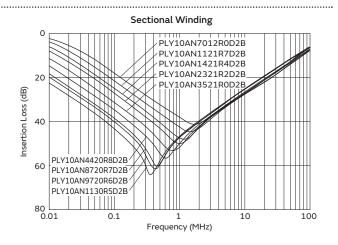
 $Operating \ Temperature \ Range: -25 ^{\circ}C \ to \ 60 ^{\circ}C \qquad Winding \ Temperature \ Rise \ (at \ Rated \ Current): \ 60 ^{\circ}C \ (max.)$

Sectional Winding

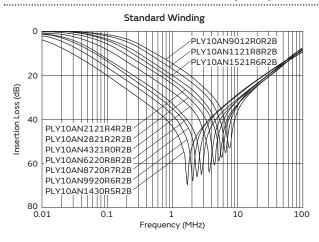

Part Number	Common Mode Inductance	Normal Mode Inductance Rated Curren (min.) (µH) (A)	Rateu Current	Rated Current	Rated Voltage	
	(min.) (mH)		(A)	(VAC)	(VDC)	
PLY10AN7012R0D2B	0.7	50	2.0	300	500	
PLY10AN1121R7D2B	1.1	65	1.7	300	500	

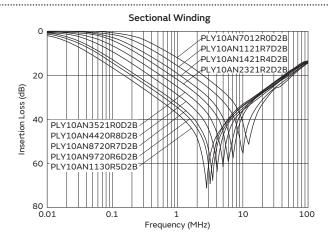
Continued from the preceding page.


Part Number	Common Mode Inductance	Normal Mode Inductance	Rated Current	Rated Voltage	
	(min.) (mH)	(min.) (µH)	(A)	(VAC)	(VDC)
PLY10AN1421R4D2B	1.4	110	1.4	300	500
PLY10AN2321R2D2B	2.3	160	1.2	300	500
PLY10AN3521R0D2B	3.5	240	1.0	300	500
PLY10AN4420R8D2B	4.4	320	0.8	300	50
PLY10AN8720R7D2B	8.7	500	0.7	300	50
PLY10AN9720R6D2B	9.7	670	0.6	300	50
PLY10AN1130R5D2B	11.0	840	0.5	300	50


Operating Temperature Range: -25°C to 60°C Winding Temperature Rise (at Rated Current): 60°C (max.)

Equivalent Circuit Diagram




Common Mode Insertion Loss - Frequency Characteristics

Differential Mode Insertion Loss - Frequency Characteristics

∴ Caution/Notice

⚠ Caution (Rating)

1. Rated Current

Operating current should not exceed the rated value. Even if operating current is under the rated value, adequate ventilation is required to avoid excessive heat generated within the product (choke coil) and from surrounding heat sources. If exceeding these conditions, excessive heat may cause fumes or permanent damage to the product. Please ensure that the product (choke coil) is evaluated and confirmed against the specification when it is mounted in your final assembled product.

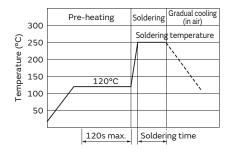
-> Winding temperature should be less than 120°C.

Maximum allowable temperature at the surface of the coil (ambient temperature + winding temperature rise) is in accordance with each safety standard applicable to the final assembled product.

When the temperature at winding exceeds the maximum allowable temperature of the safety standard, the rated current should be derated.

2. Inrush Current

Inrush current should not exceed 10 times the rated current within 1/4 cycle of 50/60Hz commercial power line. Inrush current should be limited to a minimum of 10 seconds after last inrush.


If these conditions are exceeded, excessive heat may cause fumes or permanent damage to the component, or at worst cause ignition.

Notice (Storage and Operating Conditions)

1. Soldering Conditions

(1) Flux, Solder

- · Rosin-based flux should be used. Do not use strong acidic flux with halide content exceeding 0.2wt% (chlorine conversion value)
- · Use Sn-3.0Ag-0.5Cu solder
- (2) Flow soldering profile

Standard profile		Limit profile		
Sn-3.0Ag-0.5Cu solder				
Soldering temp.	Soldering time	Soldering temp.	Soldering time	Cycle of flow
250±2°C	4-6s	265±3°C	5s	2 times

For additional mounting methods, please contact Murata.

Notice (Soldering and Mounting)

Magnetic Flux Leakage

Choke coils generate small amounts of magnetic flux leakage that may adversely affect equipment operation according to component arrangement.

Testing should be completed on final assembly to ensure equipment performance is not affected.

2. Cleaning

Avoid cleaning the product due to non-waterproof construction.

- 3. Storage and Handling Requirements
- (1) Storage period

Product should be used within 12 months after receiving. Solderability should be checked if this period is exceeded.

(2) Storage conditions

Storage Temperature: -10 to 40 °C
Relative humidity: 30 to 70%
Avoid sudden changes in temperature and humidity.
Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, as it may cause oxidation of lead terminals resulting in poor solderability or corrosion of component windings.

(3) Handling conditions

Care should be taken when transporting or handling the product to avoid excessive vibration or mechanical shock.

Notice (Rating)

Coil Humming Noise

Magnetic flux generated between coil and core or between the choke coil windings creates repulsive power between the coil windings. This repulsive power causes the coil winding to vibrate and create a humming noise. The amount of hum produced by the coil is proportionate to the amount of harmonic distortion generated by the operating current. This does not influence the electrical performance of the coils, but it should be considered and tested in actual circuit application.

Packaging

Minimum Quantity

Part Number	Minimum Quantity (pcs.)		
Part Number	Вох		
PLA10	1260		
PLH10	1260		
PLY10	1200		
PLY17	1080		