HALOGEN

FREE

GREEN

(5-2008)

Твердотельные танталовые чип конденсаторы поверхностного монтажа, литой корпус, низкий ESR

С сентября 2005 года, новые конденсаторы не будут добавлены к серии 593D. Все новые рейтинги доступны в серии TR3. Серия TR3 предлагает внедренный низким ESR для импульсных источников питания и преобразователей DC / DC.

ПРОИЗВОДИТЕЛЬНОСТЬ / ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ

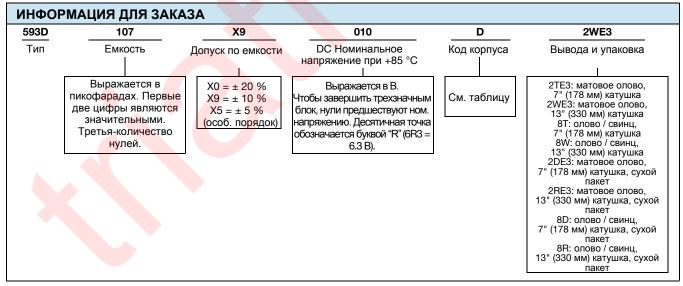
www.vishay.com/doc?40192

Рабочая температура: -55 °C до +125 °C (выше 85 ° C, требуется снижение номинальных напряжения)

Диапазон емкостей: 0.47 мкФ до 680 мкФ Допуск по емкости: ± 5 %, ± 10 %, ± 20 % 100 % Испытываются импульсным током (C,D и Е корпуса)

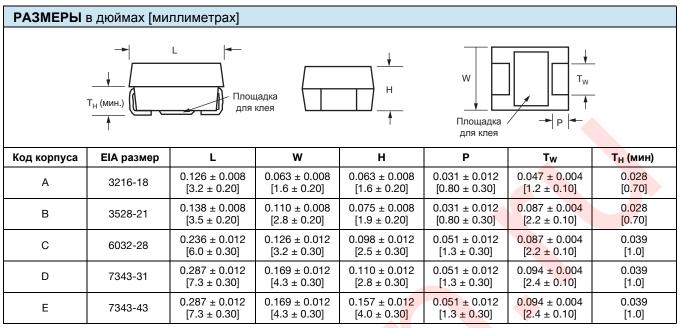
Номинальное напряжение: 4 B_{DC} до 50 B_{DC}

Особенности


- Низкий ESR
- Литой корпус доступен в шести типоразмерах
- Выводы: 100 % матовое олово, стандартные, а также оловяно-свинцовые
- Высокая пульсация тока
- Совместим с массовым оборудованием автоматического захвата и установки
- Квалифицированно EIA-717
- Уровень чувствительности к влажности 1
- Гибкие вывода
- Отвечает EIA-535-BAAC механические и эксплуатационные требования
- Материал категоризации: для определения соответствия см. www.vishay.com/doc?99912

Примечание

* Данное техническое описание содержит сведения о частях, которые являются RoHS-совместимыми и / или частей, не соответствующих требованиям RoHS. Например, вывода с содежанием свинеца (РВ) являются не RoHS-совместимыми.


Применение

- Промышленность
- Телекоммуникационная инфраструктура
- Общего назначения

- Мы оставляем за собой право поставлять более высокие номинальные напряжения и туже емкость конденсаторов допуск в тот же размер корпуса. Замены напряжения будут отмечены более высоким номинальным напряжением.
 15 июля 2008, номера деталей с кодами пайки 2T и 2W может иметь либо матовую или олово-свинцовые вывода. 2TE3 и 2WE3 указывают только на вывода матового олова. Коды 8T и 8W указать только олово / свинец вывода.
 Низкий ESR твердотельных танталовых чип-конденсаторов может изменится 1,25 раза за пределы техническое описание после монтажа.
- Сухой пакет, как указано в J-STD-033 для MSL3. Применимо только для D и E корпусов.

Примечание

Площадка для клея (токонепроводящая часть литого корпуса) предназначена для приклеивания (в качестве опции).

Таблица	Габлица емкостей и корпусов конденсаторов										
мкФ	4 B	6.3 B	10 B	16 B	20 B	25 B	35 B	50 B			
0.47							А				
0.68							А				
1.0				Α	А	А	A/B	B/C			
1.5						А	B/C	B/C			
2.2					А	A/B	B/C	C/D			
3.3				Α	А	В	С	C/D			
4.7			А	A/B	A/B	B/C	С	D/E			
6.8			Α	Α	В	С	C/D	D/E			
10		А	Α	A/B/C	B/C	С	C/D	D/E			
15	А	А	A/B	B/C	B/C	C/D	D/E				
22	Α	A/B	A/B/C	B/C	C/D	D	D/E				
33	A/B	A/B	B/C	B/C/D	C/D	D/E					
47	A/B	B/C	B/C/D	C/D	D/E	Е					
68	B/C	B/C	C/D	D	D/E						
100	B/C	B/C/D	C/D	D/E	E						
150	B/C/D	C/D/E	D/E	Е							
220	C/D	D/E	D/E								
330	D	D/E	E								
470	D/E	E									
680	E										

Vishay Sprague

Маркировка

Маркировка конденсатор включает в себя анод (+) полярности полосы, емкости в мкФ и номинальное напряжение. Для корпусов "А" используется буквенный код для напряжения и EIA кода емкости.

Товарный знак Vishay Sprague® включается, если позволяет место. Конденсаторы с самым высок<mark>им ре</mark>йтингом при напряжении 6,3 В, отмечены 6 В. Код дата изготовления указана на всех конденсаторах.

Конденсаторы могут иметь схему маркировки TP3, если детали заменяются высокой производительности автомобильной класса TP3. Это включает в себя, например, буква "Z" или "Р", как показано ниже.

Позвоните на завод для дальнейшего объяснения.

СТАНДАРТ	НЫЙ ПЕРЕЧ <mark>Е</mark> НІ					
Емкость (мкФ)	Код корпуса	Парт номер	Макс DCL при +25 °C (мкА)	Макс DF при +25°C 120 Гц (%)	Макс ESR при +25 °C 100 кГц (ом)	Макс пульсация 100 кГц I _{RMS} (A)
		4 В _{DC} при +85	5 °C; 2.7 В _{DC} при +	125 °C		
15	Α	593D156(1)004A(2)	0.6	6	1.500	0.22
22	Α	593D226(1)004A(2)	0.9	6	1.500	0.22
33	Α	593D336(1)004A(2)	1.3	6	1.500	0.22
33	В	593D336(1)004B(2)	1.3	6	0.500	0.41
47	Α	593D476(1)004A(2)	1.9	14	0.800	0.31
47	В	593D476(1)004B(2)	1.9	6	0.500	0.41
68	В	593D686(1)004B(2)	2.7	6	0.500	0.41
68	С	593D686(1)004C(2)	2.7	6	0.275	0.63
100	В	593D107(1)004B(2)	4.0	8	0.450	0.43
100	С	593D107(1)004C(2)	4.0	6	0.225	0.66

- Парт номер определения:
 - (1) Допуск: ХО, Х9
 - (2) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W
 - (3) Вывода, не содержащие свинец и код упаковки: 2TE3, 2WE3
 - (4) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

Vishay Sprague

Емкость (мкФ)	Код корпуса	Парт номер	Макс DCL при +25 °C (мкА)	Макс DF при +25 °C 120 Гц	Макс ESR при +25 °C 100 кГц	Макс пульсация 100 кГц І _{ВМ} S
				(%)	(ом)	(A)
			5°C; 2.7 В _{DC} при +			
150	В	593D157(1)004B(2)	6.0	14	0.500	0.41
150	С	593D157(1)004C(2)	6.0	12	0.250	0.66
150	D	593D157(1)004D(4)	6.0	8	0.150	1.00
220	С	593D227(1)004C(2)	8.8	8	0.200	0.74
220	D	593D227(1)004D(4)	8.8	8	0.150	1.00
330	D	593D337(1)004D(4)	13.2	8	0.150	1.00
470	D	593D477(1)004D(4)	18.8	10	0.125	1.10
470	E	593D477(1)004E(4)	18.8	10	0.100	1.28
680	E	593D687(1)004E(4)	27.2	12	0.100	1.28
		6.3 В _{DC} при +	85 °C; 4 В _{DC} при +	125 °C		
10	Α	593D106(1)6R3A(2)	0.6	6	2.000	0.19
15	Α	593D156(1)6R3A(2)	0.9	6	2.000	0.19
22	Α	593D226(1)6R3A(2)	1.3	6	2.000	0.19
22	В	593D226(1)6R3B(2)	1.3	6	0.600	0.38
33	Α	593D336(1)6R3A(2)	2.0	14	0.800	0.31
33	В	593D336(1)6R3B(2)	2.0	6	0.600	0.38
47	В	593D476(1)6R3B(2)	2.8	6	0.550	0.39
47	С	593D476(1)6R3C(2)	2.8	6	0.300	0.61
68	В	593D686(1)6R3B(2)	4.1	6	0.550	0.39
68	С	593D686(1)6R3C(2)	4.1	6	0.275	0.63
100	В	593D107(1)6R3B(2)	6.0	15	0.500	0.41
100	С	593D107(1)6R3C(2)	6.0	6	0.250	0.66
100	D	593D107(1)6R3D(4)	6.0	6	0.140	1.04
150	С	593D157(1)6R3C(2)	9.0	8	0.200	0.74
150	D	593D157(1)6R3D(4)	9.0	8	0.125	1.10
150	Е	593D157(1)6R3E(4)	9.0	8	0.100	1.28
220	D	593D227(1)6R3D(4)	13.2	8	0.100	1.22
220	Е	593D227(1)6R3E(4)	13.2	8	0.100	1.28
330	D	593D337(1)6R3D(4)	19.8	8	0.125	1.10
330	E	593D337(1)6R3E(4)	19.8	8	0.100	1.28
470	E	593D477(1)6R3E(4)	28.2	10	0.100	1.28
			35 °C; 7 В _{DC} при +1			-
4.7	A	593D475(1)010A(2)	0.5	6	3.000	0.16
6.8	A	593D68 <mark>5(1)</mark> 010A(2)	0.7	6	3.000	0.16
10	Α	593D106(1)010A(2)	1.0	6	2.000	0.19
15	A	593D156(1)010A(2)	1.5	6	2.000	0.19
15	В	593D156(1)010B(2)	1.5	6	0.700	0.35
22	A	593D226(1)010A(2)	2.2	8	1.500	0.22
22	В	593D226(1)010B(2)	2.2	6	0.700	0.35
22	C	593D226(1)010C(2)	2.2	6	0.345	0.56
33	В	593D336(1)010B(2)	3.3	6	0.600	0.38
33	C	593D336(1)010C(2)	3.3	6	0.300	0.61
47	В	593D476(1)010B(2)	4.7	6	0.600	0.38
47 47	C	593D476(1)010B(2)	4.7	6	0.300	0.61
47 47		593D476(1)010D(2)	4.7	6	0.200	0.87
	D					
68 68	C D	593D686(1)010C(2) 593D686(1)010D(4)	6.8 6.8	6 6	0.275 0.150	0.63 1.00

- Парт номер определения:
 (1) Допуск: X0, X9

 - (1) Допуоса, хо, хо (2) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W (3) Вывода, не содержащие свинец и код упаковки: 2TE3, 2WE3 (4) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

Vishay Sprague

	НЫЙ ПЕРЕЧЕНІ		Maur DO	Макс DF	Макс ESR	Макс пульсаци
Емкость (мкФ)	Код корпуса	Парт номер	Макс DCL при +25 °C (мкА)	при +25 °C 120 Гц (%)	при +25 °C 100 кГц	100 кГц I _{RMS}
		10 P = mu .	85 °C; 7 В _{DC} при +		(ом)	(A)
100					0.000	0.74
100	C	593D107(1)010C(2)	10.0	8	0.200	0.74
100	D	593D107(1)010D(4)	10.0	6	0.100	1.22
150	D	593D157(1)010D(4)	15.0	8	0.100	1.22
150	E	593D157(1)010E(4)	15.0	8	0.100	1.28
220	D	593D227(1)010D(4)	22.0	8	0.125	1.10
220	E	593D227(1)010E(4)	22.0	8	0.100	1.28
330	E	593D337(1)010E(4)	33.0	10	0.100	1.28
			85 °C; 10 В _{DC} при н			<u> </u>
1.0	Α	593D105(1)016A(2)	0.5	4	5.500	0.12
3.3	Α	593D335(1)016A(2)	0.5	6	3.500	0.15
4.7	Α	593D475(1)016A(2)	0.8	6	2.500	0.17
4.7	В	593D475(1)016B(2)	0.8	6	1.500	0.24
6.8	Α	593D685(1)016A(2)	1.1	6	3.000	0.16
10	Α	593D106(1)016A(2)	1.6	6	1.700	0.21
10	В	593D106(1)016B(2)	1.6	6	0.800	0.33
10	С	593D106(1)016C(2)	1.6	6	0.450	0.49
15	В	593D156(1)016B(2)	2.4	6	0.800	0.33
15	С	593D156(1)016C(2)	2.4	6	0.400	0.52
22	В	593D226(1)016B(2)	3.5	6	0.700	0.35
22	С	593D226(1)016C(2)	3.5	6	0.350	0.56
33	В	593D336(1)016B(2)	5.3	6	0.700	0.35
33	C	593D336(1)016C(2)	5.3	6	0.300	0.61
33	D	593D336(1)016D(4)	4.2	4	0.225	0.82
47	C	593D476(1)016 <mark>C(2)</mark>	7.5	6	0.300	0.61
47	D	593D476(1)016D(4)	7.5	6	0.150	1.00
68	D	593D686(1)016D(4)	10.9	6	0.150	1.00
100	D	593D107(1)016D(4)	16.0	8	0.125	1.10
100	Ē	593D107(1)016E(4)	16.0	8	0.100	1.28
150	E	593D157(1)016E(4)	24.0	8	0.100	1.28
100	<u> </u>		85 °C; 13 В _{DC} при н		0.100	1.20
1.0	A	593D105(1)020A(2)	0.5	4	5.500	0.12
2.2	A	593D225(1)020A(2)	0.5	6	4.000	0.14
3.3	A	593D335(1)020A(2)	0.7	6	4.000	0.14
4.7	A	593D475(1)020A(2)	0.9	6	3.500	0.15
4.7	В	593D47 <mark>5(1)020A(2)</mark>	0.9	6	1.000	0.29
					1.000	
6.8	В	593D685(1)020B(2)	1.4	6		0.29
10	В	593D106(1)020B(2)	2.0	6	1.000	0.29
10	C	593D106(1)020C(2)	2.0	6	0.450	0.49
15	В	593D156(1)020B(2)	3.0	6	1.000	0.29
15	С	593D156(1)020C(2)	3.0	6	0.400	0.52
22	С	593D226(1)020C(2)	4.4	6	0.375	0.54
22	D	593D226(1)020D(4)	3.5	4	0.225	0.82
33	C	593D336(1)020C(2)	6.6	6	0.350	0.56
33	D	593D336(1)020D(4)	6.6	6	0.200	0.87
47	D	593D476(1)020D(4)	9.4	6	0.200	0.87
47	E	593D476(1)020E(4)	7.5	4	0.150	1.05
68	D	593D686(1)020D(4)	13.6	6	0.175	0.93
68	Е	593D686(1)020E(4)	13.6	6	0.150	1.05
100	E	593D107(1)020E(4)	20.0	8	0.150	1.05

- Парт номер определения:
 (1) Допуск: X0, X9
 (2) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W
 (3) Вывода, не содержащие свинец и код упаковки: 2TE3, 2WE3
 (4) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

Vishay Sprague

				Макс DF	Макс ESR	Макс пульсация
Емкость (мкФ)	Код корпуса	Парт номер	Макс DCL при +25 °C (мкА)	при +25 °C 120 Гц (%)	при +25 °C 100 кГц	100 кГц І _{ВМS} (A)
		25 Въс при ±	85 °C; 17 В _{DC} при н		(ом)	(-)
1.0	A	593D105(1)025A(2)	0.5	4	4.000	0.14
1.5	A	593D155(1)025A(2)	0.5	6	4.000	0.14
2.2	A		0.6	6	4.000	0.14
		593D225(1)025A(2)				
2.2	В	593D225(1)025B(2)	0.6	6	1.500	0.24
3.3 4.7	В	593D335(1)025B(2)	0.8	6	1.500	0.24
	В	593D475(1)025B(2)	1.2	6	1.500	0.24
4.7	С	593D475(1)025C(2)	1.2	6	0.525	0.46
6.8	С	593D685(1)025C(2)	1.7	6	0.500	0.47
10	С	593D106(1)025C(2)	2.5	6	0.450	0.49
15	С	593D156(1)025C(2)	3.8	6	0.425	0.51
15	D	593D156(1)025D(4)	3.8	6	0.250	0.77
22	D	593D226(1)025D(4)	5.5	6	0.200	0.87
33	D	593D336(1)025D(4)	8.3	6	0.200	0.87
33	E	593D336(1)025E(4)	8.3	6	0.200	0.91
47	E	593D476(1)025E(4)	11.8	6	0.200	0.91
			85 °C; 23 В _{DC} при н	-125 °C		
0.47	Α	593D474(1)035A(2)	0.5	4	4.000	0.14
0.68	Α	593D684(1)035A(2)	0.5	4	4.000	0.14
1.0	Α	593D105(1)035A(2)	0.5	4	4.000	0.14
1.0	В	593D105(1)035B(2)	0.5	4	2.000	0.21
1.5	В	593D155(1)035B(2)	0.5	6	2.000	0.21
1.5	С	593D155(1)035C(2)	0.5	6	0.900	0.35
2.2	В	593D225(1)035B(2)	0.8	6	2.000	0.21
2.2	С	593D225(1)035C(2)	0.8	6	0.900	0.40
3.3	С	593D335(1)035C(2)	1.2	6	0.700	0.45
4.7	С	593D475(1)035C(2)	1.6	6	0.500	0.47
6.8	C	593D685(1)035C(2)	2.4	6	0.475	0.48
6.8	D	593D685(1)035D(4)	2.4	6	0.300	0.71
10	C	593D106(1)035C(2)	3.5	6	0.450	0.49
10	D	593D106(1)035D(4)	3.5	6	0.300	0.71
15	D	593D156(1)035D(4)	5.3	6	0.300	0.71
15	E		5.3	6	0.300	0.74
		593D156(1)035E(4)		6		
22 22	DE	593D226(1)035D(4) 593D226(1)035E(4)	7.7 7.7	6	0.300 0.275	0.71 0.77
22	-				0.213	0.77
1.0	В	593D105(1)050B(2)	0.5	4	2.000	0.21
		593D105(1)050B(2)		ч 1		0.26
1.0	C		0.5	4	1.600	
1.5	В	593D155(1)050B(2)	0.8	6	2.000	0.21
1.5	C	593D155(1)050C(2)	0.8	6	1.500	0.27
2.2	С	593D225(1)050C(2)	1.1	6	1.500	0.27
2.2	D	593D225(1)050D(4)	1.1	6	0.800	0.43
3.3	С	593D335(1)050C(2)	1.7	6	1.500	0.27
3.3	D	593D335(1)050D(4)	1.7	6	0.800	0.43
4.7	D	593D475(1)050D(4)	2.4	6	0.600	0.50
4.7	É	593D475(1)050E(4)	1.9	6	0.600	0.50
6.8	D	593D685(1)050D(4)	3.4	6	0.600	0.50
6.8	Е	593D685(1)050E(4)	3.4	6	0.550	0.55
10	D	593D106(1)050D(4)	5.0	6	0.550	0.52
10	Е	593D106(1)050E(4)	5.0	6	0.550	0.55

- Парт номер определения:
 (1) Допуск: X0, X9
 (2) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W
 (3) Вывода, не содержащие свинец и код упаковки: 2TE3, 2WE3
 (4) Вывода и упаковка: 2TE3, 2WE3, 8T, 8W, 2DE3, 2RE3, 8D, 8R

Vishay Sprague

АНДАРТНЫЕ УСЛОВИЯ. НАПРИМЕР: ВЫХОДНЫЕ ФИЛЬТРЫ	
Номинальное напряжение конденсатора	Рабочее Напряжение
4.0	2.5
6.3	3.6
10	6.0
16	10
20	12
25	15
35	24
50	28
ТЯЖЕЛЫЕ УСЛОВИЯ. НАПРИМЕР: ВХОДНЫЕ ФИЛЬТРЫ	
Номинальное напряжение конденсатора	Рабочее Напряжение
4.0	2.5
6.3	3.3
10	5.0
16	8.0
20	10
25	12
35	15

РАССЕИВАЕМАЯ МОЩНОСТЬ	
Код корпуса	МАКСИМАЛЬНО ДОПУ <mark>СТИ</mark> МАЯ РАСС <mark>ЕИВ</mark> АЕМАЯ МОЩНОСТЬ ПРИ +25 °C (Вт) В СВОБОДНОМ ВОЗДУХЕ
A	0.075
В	0.085
С	0.110
D	0.150
E	0.165

КОЛИЧЕСТВО В СТАНДАРТНОЙ УПАКОВКЕ									
Kon vennyes	штук в	КАТУШКЕ							
Код корпуса	7" КАТУШКА	13" КАТУШКА							
A	2000	9000							
В	2000	8000							
С	500	3000							
D	500	2500							
E	400	1500							

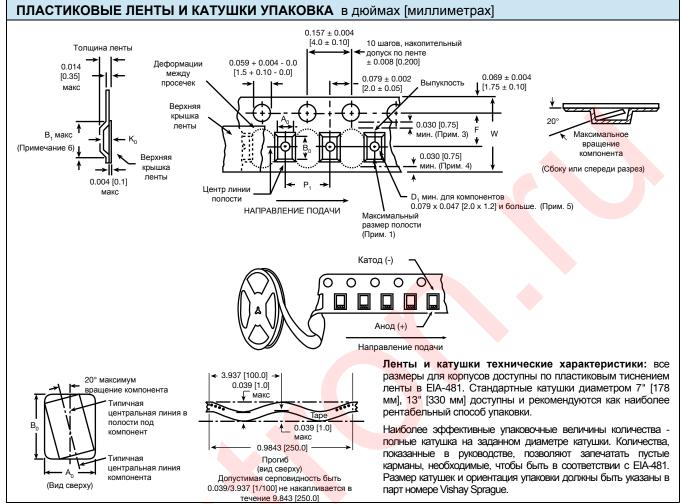
Vishay Sprague

КОММЕРЧЕСКИЕ ПРОДУКТЫ

ТВЕРДОТЕЛЬН	ТВЕРДОТЕЛЬНЫЕ ТАНТАЛОВЫЕ КОНДЕНСАТОРЫ - ЛИТЫЕ КОРПУСА								
СЕРИЯ	293D	793DX-CTC3- CTC4	593D	TR3	TP3	TL3			
ПРОДУКТ ИЗОБРАЖЕНИЯ	A REAL PROPERTY.	IN THE LINE (LIVE)	2 49 2 4 3 5 3 6 3 6 3 7 3 7 3 7		12:55 12:55	180-60 180-60			
ТИП		Поверхностно	ого монтажа Там	ТАМО∪NТ [™] , литой корп					
ОСОБЕННОСТИ	Стандарт промышленный класс	CECC одобренный	Низкий ESR	Низкий ESR	Высокая производительность, автомобильный класс	Очень н <mark>изк</mark> ий DCL			
ТЕМПЕРАТУРНЫЙ ДИАПАЗОН			-55 °C	С до +125 °C					
ДИАПАЗОН ЕМКОСТЕЙ	0.1 мкФ до 1000 мкФ	0.1 мкФ до 100 мкФ	1 мкФ до 470 мкФ	0.47 мкФ до 1000 мкФ	0.1 мкФ до 470 мкФ	0.1 мкФ до 470 мкФ			
ДИАПАЗОН НАПРЯЖ.	4 В до 75 В	4 В до 50 В	4 В до 50 В	4 В до 75 В	4 B до 5 <mark>0 B</mark>	4 В до 50 В			
ДОПУСК ПО ЕМКОСТИ			± 10	%, ± 20 %					
ТОК УТЕЧКИ		0.005 CV или 0.25 мкА, в зависимости от большего							
ТАНГЕНС УГЛА ДИЭЛЕКТР. ПОТЕРЬ	4 % до 30 %	4 % до 6 %	4 % до 15 %	4 % до 30 %	4 % до 15 %	4 % до 15 %			
код корпусов	A, B, C, D, E, V	A, B, C, D	A, B, C, D, E	A, <mark>B,</mark> C, D, E, V, W	A, B, C, D, E	A, B, C, D, E			
вывода		100 % ста	анда <mark>ртн</mark> ое матог	вое о <mark>лов</mark> о, олово / сви	нец доступен				

ТВЕРДОТЕЛЬНЫЕ ТАНТАЛОВ <mark>ЫЕ</mark> КОН <mark>ДЕНС</mark> АТОРЫ - ЛИТЫЕ КОРПУСА								
СЕРИЯ	СЕРИЯ ТНЗ		TH4 TH5		TF3			
ПРОДУКТ ИЗОБРАЖЕНИЯ	1278 S	Brita Brita						
ТИП	П	о <mark>вер</mark> хностного монта	жа Тамтамо∪мт™, лите	ой корпус				
особенности	+150 °C,	Высокая температура +150°C, автомобильный класс	Очень высокая температура +200 °C	Встроенный предохранитель	Встроенный предохранитель Низкий ESR			
ТЕМ <mark>ПЕРАТУРНЫЙ</mark> ДИАПАЗОН	-55 °C до +150 °C	-55 °C до +175 °C	-55 °C до +200 °C	-55 °C до +125 °C				
ДИАПАЗОН ЕМКОСТЕЙ	0.33 мкФ до 220 мкФ	10 мкФ до 47 мкФ	4.7 мкФ до 100 мкФ	0.47 мкФ до 680 мкф	0.47 мкФ до 470 мкФ			
ДИАПАЗОН НАПРЯЖ.	6.3 B до 50 V	6.3 В до 35 V	5 В до 24 V	4 В до 50 V	4 В до 50 V			
ДОПУСК ПО ЕМКОСТИ			± 10 %, ± 20 %					
ТОК УТЕЧКИ		0.01 CV или 0.5	мкА, в зависимости от	большего				
ТАНГЕНС УГЛА ДИЭЛЕКТР. ПОТЕРЬ	4 % до 8 %	4.5 % до 6 %	6 % до 10 %	6 % до 15 %	6 % до 15 %			
код корпусов	A, B, C, D, E	B, C, D	E	C, D, E	C, D, E			
вывода	100 % стандартное матовое олово, олово / свинец и позолоченные доступны	100 % матовое олово	Позолоченные	100 % стандартное матовое олово				

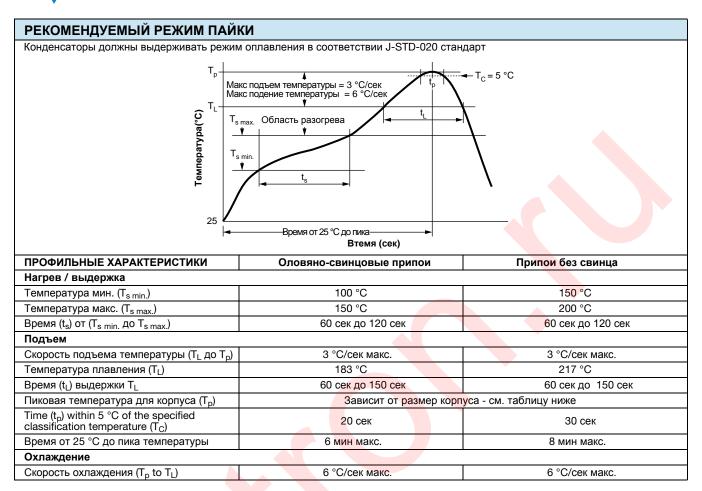
Справочник корпусов


Vishay Sprague

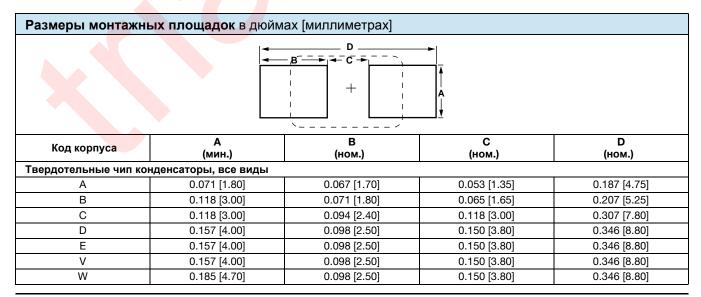
ВЫСОКОНАДЕЖНЫЕ КОНДЕНСАТОРЫ

ТВЕРДОТЕЛЬНЫЕ ТАНТАЛОВЫЕ КОНДЕНСАТОРЫ - ЛИТЫЕ КОРПУСА								
СЕРИЯ	тмз	Т83	T86	CWR11	95158			
ПРОДУКТ ИЗОБРАЖЕНИЯ	lifte & life of life o	\$7716 \$0 @			2.44 2.44 0.00			
тип	Tantamount™, литой корпус, Hi-Rel.		NT [™] , литой i-Rel. COTS	Тантамоunт™, литой корпус, <mark>DLA</mark> одоб <mark>рен</mark> ный				
особенности	Высокая надежность, для медицинских инструментов	Высокая Е надежность, стандартные и с низким ESR	ысокая надежность со встроенным предохранителем стандартные и с низким ESR	, MIL-PRF-55365/8 квалифицированный	Низкий ESR			
ТЕМПЕРАТУРНЫЙ ДИАПАЗОН		-55 °C до +125 °C						
ДИАПАЗОН ЕМКОСТЕЙ	1 мкФ до 220 мкФ	0.1 мкФ до 470 мкФ	0.47мкФ до 330 мкФ	0.1 мкФ до 100 мкф	4.7 мкФ до 220 мкФ			
ККАПТАН НОЕУПРИЯ	с. 4 В до 20 В	4 В до 63 В		4 В до 50 В				
ДОПУСК ПО ЕМКОСТИ	ź	± 10 %, ± 20 %		± 5 %, ± 10 %, ± 20 %	± 10 %, ± 20 %			
ТОК УТЕЧКИ	0.005 CV или 0.25 мкА, в зависимости от большего		0.01 СV ил	ли 0.5 мкА, в зависимости с	от большего			
ТАНГЕНС УГЛА ДИЭЛЕКТР. ПОТЕРЬ	4 % до 8 %	4 % до 15 %	6 % до 16 %	4 % до 6 %	4 % до 12 %			
код корпусов	A, B, C, D, E	A, B, C, D, E	C, D, E	A, B, C, D	C, D, E			
вывода	100 % матовое олово	100 % матовое олово; оловоносвицовым припоем луженые	100 % матовое олово	олово / свинец припоем луженые	Олово / свинцовым припоем покрыло; позолоченный			

Vishay Sprague



Примечания


- Метрические размеры могут изменяться. Размеры в дюймах округлены и приведены только для справки.
- (1) A₀, B₀, K₀, определяются макс<mark>им</mark>альным<mark>и разм</mark>ерами до концов выводов, проходящих от корпуса компонента и / или размеров тела компонента. Зазор между концами выводов или тела компонента к сторонам и глубины полости (A0, B0, K0) должно быть в пределах "(0,05 мм) и минимум 0,020" 0,002 (0,50 мм) максимум. Зазор допускается, который позволит предотвратить вращение компонента внутри полости не более 20°.
- (2) Лента с компонентами должны проходить вокруг радиуса "R" без повреждений. Минимальная длина прицепа может потребовать дополнительной длины, чтобы обеспечить "R" минимум на 12 мм рельефных ленты для катушек с диаметром ступицы, приближающихся N минимум.
- (3) Этот аспект является плоская область от края отверстия звездочке к или внешней деформации несущей ленты между рельефных полостей или к краю полости в зависимости от того, что меньше.
- (4) Эт<mark>от</mark> аспект я<mark>вляет</mark>ся плоская о<mark>бла</mark>сть от края несущей ленты, противоположной перфорации либо к внешней деформации несущей ленты между тисненым полости или к краю полости в зависимости от того, что меньше.
- ⁽⁵⁾ Тисн<mark>еная п</mark>осадочно<mark>е отв</mark>ерстие должно быть измерено от звездочке отверстие контрольного расположение вмятин. Размеры расположения тиснение должны применяться независимо друг от друга.
- $^{(6)}\, \mathrm{B}_1$ измерен<mark>ие яв</mark>ляется справочным размером питателя ленты, только зазор.

Код корпуса	Дента размеры	В ₁ (макс)	D ₁ (мин)	F	К ₀ (макс)	P ₁	w				
Конденса	Конденсаторы в литых корпусах; все типы										
Α	8 мм	0.165	0.039	0.138 ± 0.002	0.094	0.157 ± 0.004	0.315 ± 0.012				
В	O MINI	[4.2]	[1.0]	$[3.5 \pm 0.05]$	[2.4]	$[4.0 \pm 1.0]$	$[8.0 \pm 0.30]$				
С											
D		0.20	0.059	0.017 - 0.00	0.177	0.315 ± 0.004	0.470 + 0.010				
E	12 мм	0.32 [8.2]	[1.5]	0.217 ± 0.00 [5.5 ± 0.05]	[4.5]	$[8.0 \pm 1.0]$	0.472 ± 0.012 [12.0 ± 0.30]				
V		[0.2]	[1.0]	[0.0 ± 0.00]	[4.0]	[0.0 ± 1.0]	[12.0 ± 0.00]				
W											

Vishay Sprague

Пиковые температуры для кор <mark>пуса э</mark> лемента <mark>(Т_р)</mark>						
Kon konnyos			Пиковые температуры для корпуса элемента (T _p)			
Код корпуса			Оловяно-свинцовые припои	Припои без свинца		
A, B, C, V			235 °C	260 °C		
D, E, W			220 °C	250 °C		

Типичные эксплуатационные характеристики

Vishay Sprague

Твердотельные танталовые чип конденсаторы

КОНДЕНСАТОР, ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ						
Параметр	ЭКСПЛУАТАЦИОННЫЕ	ХАРАКТЕРИСТИКИ				
Температурный диапазон	-55 °C до +85 °C (до +125 °C с снижение номинальных параметров напряжения)					
Допуск по емкости	± 20 %, ± 10 %. Испытано с помощью метода моста, при +25 °C, 120 Гц					
Тангенс угла диэл. потерь	Лимит на стандартную таблицу. Испытано с помощью метода моста, при +25 °C, 120 Гц					
ESR	Лимит на стандартную таблицу. Испытано с помощью метода моста, при +25 °C, 120 Гц					
Ток утечки	После приложения номинального напряжения конденсаторов в течение 5 мин с помощью постоянного источника питания с 1 ком резистором последовательно соединенным с конденсатором для тест, ток утечки при 25 °C не превышает 0.01 CV или 0.5 мкА, в зависимости от большего. Обратите внимание, что ток утечки зависит от температуры и приложенного напряжения. См. график на соответствующий поправочный коэффициент.					
Изменение емкости от температуры	+20 % макс. (при +125 °C) +10 % макс. (при +85 °C) -10 % макс. (при -55 °C)					
Обратное напряжение	Конденсаторы способны выдерживать пиковые напряжения в обратном направлении: 10 % постояннго напряжения при +25 °C 5 % постояннго напряжения при +85 °C Vishay не рекомендует умышленное или повторяющиеся приложения обратного напряжения					
Ток пульсаций	Для максимальной пульсации значений тока (при 25 ° C), обратитесь к соответствующему технического описания. Если конденсаторы должны использоваться при температуре выше + 25 ° C, допустимые RMS пульсаций тока (или напряжения) рассчитывается с использованием коэффициентов уменьшения мощности: 1.0 при +25 °C; 0.9 при +85 °C; 0.4 при +125 °C					
Максимальное рабочее и	+85 °C +125 °C					
импульсное напряжение, от температуры	НОМ. НАПРЯЖЕНИЕ (B)	ИМПУЛЬСНОЕ НАПРЯЖЕНИЕ (В)	МАКС. РАБОЧЕЕ НАПРЯЖЕНИЕ (B)	ИМПУЛЬСНОЕ НАПРЯЖЕНИЕ (В)		
	4	5.2	2.7	3.4		
	6.3	8	4	5		
	10	13	7	8		
	16	20	10	12		
	20	26	13	16		
	25	32	17	20		
	35 (3)	46	23	28		
	35 ⁽⁴⁾	42	23	28		
	50	65	33	40		
	50 (1)	60	33	40		
	63	75	42	50		
	75 ⁽²⁾	75	50	50		

[•] Вся информация, представленная в настоящем документе, отражает типичные эксплуатационные характеристики.

⁽¹⁾ Значения емкости 15 мкф и выше.

⁽²⁾ Для 293D и TR3 только.


⁽³⁾ Значения емкости ниже, чем 33 мкф.

⁽⁴⁾ Значения емкости 33 мкф и выше.

Типичные эксплуатационные характеристики

www.vishay.com Vishay Sprague

Примечание

При+25 °C, ток утечки не должен превышать значения, указанного в стандартной таблице значений.
 При +85 °C, ток утечки не должен превышать 10 разового значения, указанного в стандартной таблице значений.
 При +125 °C, ток утечки не должен превышать 12 разового значения, указанного в стандартной таблице значений.
 При+150 °C, ток утечки не должен превышать 15 разового значения, указанного в стандартной таблице значений.
 При +175 °C, ток утечки не должен превышать 18 разового значения, указанного в стандартной таблице значений.

ЭКСПЛУАТА <mark>ЦИ</mark> ОННЫ <mark>Е Х</mark> АР <mark>АКТЕРИСТИ</mark> КАМИ					
Параметр	Условие проведения	Результаты тестирования			
Импульсное напряжение	Пост применение импульсного напряжения (как указано в таблице выше) в серии с 33 ом резистором из расчета 30 сек на вкл. 30 сек выкл, для 1000 последовательных циклов испытаний при температуре 85 °C.	Изменение емкости В пределах ± 10% от нач. значения Фактор дестабилизации Ток утечки В пределах ± 10% от нач. значения Начальный заданный предел			
Наработка на отказ при +85 °C	1000 часов п <mark>ри</mark> менение номинального напряжения при 85 °C. MIL-STD-202, метод 108	В пределах -20 % / +10 % от Изменение емкости начального значения Фактор дестабилизации Начальный заданный предел			
Наработка на отказ при +125 °C	1000 часов приложение 2/3 номинального напряжения при 125 °C. MIL-STD-202, метод 108	Фактор дестабилизации Начальный заданный предел Ток утечки Не должн превышать 125 % от первоначального лимита			
Испытание на влагостойкость	При 60 °C / 90 % относительной влажности 1000 часов	Изменение емкости Фактор дестабилизации Ток утечки В пределах -10 % / +20 % от нач. значения Не превышать 150 % от первоначального лимита Не должн превышать 200 % от первоначального лимита			
Тепловой удар	MIL-STD-202, метод107, условие для испытаний A (-55 °C / +85 °C, для 1000 циклов)	Изменение емкости В пределах ± 10% от нач. значения Фактор дестабилизации Начальный заданный предел Начальный заданный предел			